
A

Using Clouds for MapReduce Measurement Assignments1

ARIEL RABKIN, CHARLES REISS, RANDY KATZ and DAVID PATTERSON, UC Berkeley

We describe our experiences teaching MapReduce in a large undergraduate lecture course using public

cloud services and the standard Hadoop API. Using the standard API, students directly experienced the

quality of industrial big-data tools. Using the cloud, every student could carry out scalability benchmarking
assignments on realistic hardware, which would have been impossible otherwise. Over two semesters, over

500 students took our course. We believe this is the first large-scale demonstration that it is feasible to use

pay-as-you-go billing in the Cloud for a large undergraduate course. Modest instructor effort was sufficient
to prevent students from overspending. Average per-pupil expenses in the Cloud were under $45. Students

were excited by the assignment: 90% said they thought it should be retained in future course offerings.

Categories and Subject Descriptors: K.3.2 [Computer and Information Science Education]: Computer
science education—Human Factors

General Terms: Economics, Management, Measurement

Additional Key Words and Phrases: Cloud computing, education, MapReduce

1. INTRODUCTION
Cloud computing is a major and disruptive change in how computing services are de-
livered. The term “cloud” has unfortunately been used for several different related
concepts. In this paper, we refer to what is sometimes called a “public cloud” — a ser-
vice that allows large quantities of computational resources to be allocated in a pay-
as-you-go manner with minimal prior arrangement [Armbrust et al. 2009]. Thanks to
the cloud, users can conveniently obtain access to thousands of cores and terabytes of
memory at a moderate cost.

Modern software can put these resources to use. Cluster computing has matured
to the point where large-scale analysis can relatively easily use commodity machines
like those provided by public cloud providers. The most prominent example of such
software is MapReduce [Dean and Ghemawat 2008], a data-processing framework
that handles load balancing and faults with little programmer intervention. In ex-
change, the programmer must fit their data-processing task into a limited API. This
programming model has proved useful and expressive enough that a large ecosystem
has evolved around MapReduce and similar frameworks, including SQL-like high-level
languages [Thusoo et al. 2009; Gates et al. 2009] and language-integration for writing
workflows of many MapReduce programs [Chambers et al. 2010; Cloudera 2012].

With these large-scale data processing systems, the public cloud now makes it prac-
tical for anyone to quickly do complex analyses of large datasets. This change is begin-
ning to percolate into the undergraduate curriculum. Many universities have begun of-
fering courses that cover MapReduce and related distributed execution systems [Kim-

1A preliminary version of this paper appeared at the SIGCSE 2012 conference.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 0000-0000/2012/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January 2012.

A:2 A. Rabkin et al.

ball et al. 2008; Johnson et al. 2008; Brown 2009]. These courses prepare students for
a world in which large-scale distributed “big data” processing is routine.

This paper describes an effort to integrate the cloud into the lower-division machine
structures course at UC Berkeley (CS 61C, titled “Great Ideas of Computer Architec-
ture”) in the Fall 2010 - Spring 2011 academic year. This course is typically taken in
the third or fourth semester, after some prior introductory programming courses.

There were two distinctive aspects of our course design. First, we used the public
cloud. Second, we used Hadoop, the standard open-source MapReduce implementa-
tion, in a lower-division course without giving students a more beginner-friendly inter-
face than the Hadoop Java API. Both these decisions are unusual; we believe we are
the first to make the former choice. Our intent in this paper is to supply guidance to
practitioners seeking to incorporate either or both elements into their own courses.

To make the course more relevant to current computing challenges, we made par-
allelism a central theme. We wanted to emphasize parallelism at all levels, from the
inherently parallel nature of hardware logic blocks through multicore systems and
all the way up to warehouse-sized shared-nothing clusters. Data-flow frameworks like
MapReduce are the most successful parallel programming model for commodity hard-
ware clusters. These frameworks embody solutions to many of the fundamental chal-
lenges of coarse-grain parallelism: handling failures, dividing up work into indepen-
dent chunks, handling inconsistent performance across the cluster, and so on.

Cloud computing makes the cost of computing explicit. For many instructors and
pupils, this will be a novel environment. For others, though, it will be seen as a re-
version to an era before the personal computer, in which students were given quotas
for the computing resources available to them. There is an important distinction, how-
ever: in the cloud, users choose whether to consume resources sequentially or in paral-
lel. This choice offers a tradeoff between efficiency and time-to-completion, which was
not generally visible in the mainframe era but which is a significant aspect of parallel
computing, and an important lesson we sought to teach.

1.1. Instructional Goals
Our interest in teaching MapReduce was primarily because we wanted to teach our
students about datacenters. We wanted to teach students about the aspects of MapRe-
duce that are well-suited to datacenter environments: the framework handles fault-
tolerance and load-balancing at large scale and without programmer intervention.
These features only make sense in the context of an execution distributed across sev-
eral machines. Such an execution environment is also necessary to motivate the trade-
offs MapReduce makes so that fault tolerance and load balancing are simpler. For
example, without the distributed context, the lack of access to shared state and serial-
ization of all intermediate values cannot be explained.

We also wanted to use the student’s experience to help explain the economics of dat-
acenters. The design of MapReduce can be explained by the challenges modern data-
center designs create: their cheaper hardware is unreliable and does not achieve con-
sistent performance (especially when it is heavily shared). MapReduce illustrates the
tradeoff that this cheaper hardware reflects: datacenter operators compensate for less
reliable hardware with more reliable software. Datacenter operators further achieve
economies of scale in the support for this hardware (buildings, cooling, staffing, etc.).
We wanted students to understand these costs.

We also wanted to teach about cloud computing itself. We believe the principal dif-
ference (versus traditional colocation) arises from the payment model. With cloud com-
puting providers, one has cost associativity[Armbrust et al. 2009]: k hours of time on
one computer costs essentially the same as one hour of time on k computers. Cost as-
sociativity is important because it allows users with modest resources to occasionally

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January 2012.

Using Clouds for MapReduce Measurement Assignments A:3

run large parallel computations. Since cost associativity makes the largest difference
for end users, we felt that this was the most important concept for our students to
understand about cloud computing.

1.2. Use of the Cloud
We were driven to use a public cloud by the conjunction of our instructional goals. First,
we thought the experience of using public cloud infrastructure and seeing the actual
dollar cost of compute resources would be a valuable one for students. This would illus-
trate cost associativity to our students. Additionally, since the prices cloud computing
providers offer tend to reflect their real costs, experiencing these costs also helped em-
phasize our unit on datacenter economics. We believed that seeing the costs of their
example computations on this infrastructure would help them understand these eco-
nomics.

Additionally, focusing on cost in combination with runtime in this contexts gave a
natural context for students to understand the incentives behind parallelization. By
using cost as an evaluation metric, students would have a way to see that their more
parallelized computations were less efficient even though they were usually substan-
tially faster.

Second, we wanted students to experience running and debugging distributed
MapReduce jobs on a significantly-sized cluster. Our ultimate pedagogic goal was to
emphasize the aspects of MapReduce that we believe have made it more successful
than competing distributed processing layers. The natural way for students to observe
MapReduce’s automatic load balancing is to see how a MapReduce implementation can
take advantage of additional resources. Unfortunately, with current implementations
of MapReduce, this advantage does not occur until relatively large data sizes. Since
Hadoop was designed for large, long jobs, it has relatively large startup overheads.
Thus, on a typical simple MapReduce task, one needs at least hundreds of megabytes
and probably gigabytes of data to observe substantial parallel speedups.

For students to observe speedup consistently, their programs must be isolated from
other students’. Public cloud providers such as Amazon Web Services offer virtual-
ized platforms with consistent performance. This gives customers predictable value-
for-money. While the consistency is not perfect, some degree of performance variability
is a fact of life in many execution environments.

Machine structures is a large course at our institution: The Fall ’10 term had 170
students; the Spring ’11 offering had 320. Given the size of our student body, using
purely university IT resources would have imposed unacceptable infrastructure costs.
To achieve the isolation we required would require several machines for each student,
even though the students would only use these resources for a brief period of time.
Even if we had a large budget to purchase computing resources and support at our
institution, we would not be able to justify purchasing such a large cluster which would
ordinarily be at such low utilization.

1.3. Research Questions and Methods
The focus of this paper is primarily on the opportunities and challenges offered by the
cloud, rather than on teaching big data, parallelism, or MapReduce. We answer four
research questions:

— Can we effectively manage cloud costs in a large introductory class, given current
billing models?

— Can we use rented cloud hardware to demonstrate principles of parallelism using
MapReduce?

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January 2012.

A:4 A. Rabkin et al.

— What difficulties do lower-division students confront when using current industry-
grade tools like Hadoop on Amazon’s Elastic Compute Cloud (EC2)?

— What challenges do instructors face in teaching these topics?

We use instructional costs, student survey results, and the quality of graded student
work to evaluate the success of our course. As we will show, using the cloud worked
well. Costs were moderate, students were happy. We made mistakes along the way,
particularly in terms of preparing students for “big data” programming. We describe
the lessons we learned and what we intend to do differently going forward. We focus on
the second offering of the course, in the Spring, which was larger, better documented,
and benefited from the experience of the first offering.

During the Spring semester, we administered three surveys to students: one over
the Winter break before the course, once in the middle of the semester, and once at the
end of the term. The first and last surveys are relevant to this paper. At the time of
the opening survey, we had email addresses for two-thirds of the students who would
ultimately enroll. Of these, 80% responded. The final survey had responses from half
the class enrollment.

2. RELATED WORK
Several schools are now teaching MapReduce as part of their undergraduate curricula.
Here, we summarize these efforts and contrast them with our own.

In the Spring of 2007, the University of Washington taught an experimental course
covering Hadoop for upper-division undergraduates [Kimball et al. 2008]. (This course
has since become a regular offering.) The emphasis was on the use of Hadoop (the
standard open-source MapReduce implementation) to solve practical problems at large
scale. Students spend several weeks on a large project. In contrast, we are teaching
Hadoop to lower-division undergraduates, in a machine structures course that includes
MapReduce as just one unit.

Both Tufts and the University of Maryland have offered “big data” courses with a
strong focus on MapReduce and related technologies such as Pig [Gates et al. 2009],
a higher-level parallel programming framework atop MapReduce [Couch 2011; Lin
2011]. Maryland has made use of EC2 for this purpose. As with UW, this was in the
context of a small upper-division class, with MapReduce, not pricing or parallelism,
being the focus.

UC Berkeley has experimented with integrating Hadoop MapReduce very early into
the curriculum, covering it briefly in the initial programming course. This course is
taught in Scheme, not Java, using a custom-written Scheme-to-Map-Reduce glue li-
brary [Johnson et al. 2008]. Performance tuning is not a goal, nor is understanding the
mechanisms behind parallel execution.

Even small schools have been able to cover Hadoop. St. Olaf College has a Hadoop
cluster, managed by student volunteers and used in several courses [Brown 2009]. The
cited paper is notable for the suggestion that schools should explore “obtaining ‘cloud’
resources on demand.” Our paper represents a large-scale demonstration and evalua-
tion of that possibility. Subsequent effort at St. Olaf has been directed towards simpli-
fying Hadoop, hiding the details from students [Garrity et al. 2011]. As at Berkeley,
considerable effort was made to have students write MapReduce programs in Scheme,
hiding the Hadoop Java APIs and command-line job submission. In contrast, we took
the opposite approach, exposing students to the real industrial tools and documenta-
tion.

Harvard has experimented with using EC2 to provide compute resources to their
introductory CS course [Malan 2010]. Students, however, were completely insulated
from provisioning and billing. Effectively, the Cloud was used as a scalable replace-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January 2012.

Using Clouds for MapReduce Measurement Assignments A:5

ment for local IT infrastructure, rather than to allow assignments that could not have
been taught otherwise.

3. COURSE DESIGN
As we mentioned, our overall goal was to re-orient our machine structures course
around the theme of parallelism. (As part of this reorientation, the course title was
changed from “Machine Structures” to “Great Ideas of Computer Architecture.” We
took a top-down approach, starting with MapReduce, which we presented as an exam-
ple of coarse-grained and high-level task parallelism. We went into less detail about
the hardware support used to implement MapReduce than future parallelism assign-
ments would. Instead, the focus of the MapReduce assignments was illustrating the
economics behind datacenters and introducing students to parallelism.

The MapReduce assignment also serves as an introduction to performance measure-
ment of parallel programs that students will do later in the course. Later assignments,
mostly labs, in the course included examples meant to demonstrate shared-memory
multithreading (including false sharing), vector instructions, and cache-aware opti-
mizations. Students would implement the changed version of the code and compare
its performance to the original on our lab machines, similar to the performance ex-
periments they previously performed for the MapReduce assignment. Generally, these
examples would be smaller than our MapReduce assignment but more closely affected
by the microarchitecture and thus tied to core machine structures material.

We also had two large parallelism-related projects later in the course. One of these
was an optimization assignment for a C program. The optimization assignment in-
cluded a similar component where students would compare the speedup they experi-
enced (on a multicore machine) to a serial version, similar to what they did previously
for the MapReduce assignment.

Our projects, the three parallelism-related projects and an additional processor sim-
ulation project were each two-week assignments. Projects had an intermediate mile-
stone deadline to help students start early. Projects were supported by weekly labs,
most of which served as tutorials for the project assignments. For the MapReduce
project we had one (Fall semester) or two (Spring) such labs for the MapReduce and
cloud computing unit. For the labs, students were permitted partners, but the projects
were done individually. Additionally, we had three hours of lecture per week, assigned
some short problem sets, and gave two written exams. Students were assessed primar-
ily on the projects and the exams.

3.1. Assignment context
We wanted students to understand the sort of data processing that cloud computing
makes available. Accordingly, we designed our assignments to have sufficiently high
resource needs that it would be obvious why one would want to rent computing re-
sources rather than use one’s own machines. We choose data processing tasks (rather
than, for example, a web application use case) because the cost and time benefits of
parallelizing are more apparent. Data processing assignments gave students a clear
metric for efficiency: cost per gigabyte of input.

It was important to us that, as much as practical, students used the same tools that
professionals use. One reason was permitting more direct application of the assign-
ment to student’s own processing tasks. Another is that we did not want to give stu-
dents the impression that performance anomalies and debugging problems were the
consequence of us providing only a “student-quality” framework. We wanted students
to understand that these are pervasive issues in dealing with real distributed systems.
Further, using off-the-shelf tools will reduce the maintenance burden on future course
staff.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January 2012.

A:6 A. Rabkin et al.

Table I. Assignments used. F= Fall, S=Spring, FS = both

Sem. Lines of Code Description Dataset Size
(bytes)

Corpus

FS 0 Lab: performance measurement,
introduction to EC2 tools

20,000 MB (F);
8,000 MB (S)

Wikipedia (F);
Usenet (S)

F ∼ 50 Project: PageRank [Page et al.
1998] in C, using Hadoop Stream-
ing locally and then on EC2

650 MB Web graph

S ∼ 10 Lab: writing MapReduce pro-
grams in Java, running locally

34 MB Usenet

S ∼ 50 Project: computing a text-
comparison metric locally and
then on EC2

8,000 MB Usenet

3.2. Instruction
Due to time pressure, we had only limited opportunities to explain Hadoop and MapRe-
duce to students. This was unfortunate and required students to do significant work
on their own to catch up.

We spent two hours of lecture on MapReduce and Cloud computing. The MapRe-
duce portions concentrated on the purpose and mechanisms of MapReduce. We noted
several ways in which Hadoop differs from the earlier Google MapReduce implementa-
tion, such as that Hadoop does not require Reducers to be idempotent, and that Google
MapReduce does. However, we did not describe the specifics of the Hadoop Java API.
The Cloud portions concentrated on the scale, components, and cost distribution of a
modern datacenter: how many nodes, what hardware per node, what costs per node.

We were able to devote only one discussion to Java and MapReduce. This was in-
tended both as a Java catch-up for new students as well as quick introduction to the
details of the Hadoop API. We especially focused on the type-signature for a Hadoop
MapReduce program: how the Java program encodes the types for the Map and Reduce
functions as both template parameters and as configuration method calls.

In the Spring, we added a two-hour lab practice session where students developed
some small MapReduce programs (using the Hadoop Java API) and ran them locally
using Hadoop MapReduce’s single-process mode. We provided students with a com-
plete word count implementation and instructed them to use it as a template for the
two MapReduce programs assigned in the lab: counting the number of documents con-
taining each word (instead of the number of times each word appears) and constructing
an inverted index from the source text.

Given the limited instructional time available, students had to figure things out us-
ing our Lab examples and Hadoop tutorials available online. One of the strengths of
using a standard tool like Hadoop is that resources intended for professional practi-
tioners are available as supplemental materials for students. With a custom-designed
interface, used exclusively in instructional contexts, no such resources are likely to be
available.

3.3. Assignments
We designed our MapReduce unit around a set of related text-processing assignments,
characterized by simple algorithms to be executed on big data. We strove for assign-
ments that would be slightly more complex than the usual “word count”-style examples
for MapReduce, but that would not overly tax students’ nascent Java programming
skills. Table I summarizes these assignments. All these assignments are available on-
line from our course webpages 2.

2These can be obtained via http://www.cs.berkeley.edu/~randy/Courses/toce12-mr-assignment/

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January 2012.

Using Clouds for MapReduce Measurement Assignments A:7

In both semesters, our assignments culminated with the project. This project re-
quired students to write a small data processing program and run it on a large data
set. We had students run their program in the cloud so that they could vary the num-
ber of (virtual) machines their program used and measure the scale-up. The data set
their programs ran across was chosen to be as large as practical while requiring less
than a half-hour of time waiting for programs to complete.

In the Fall semester, the text corpus was the link graph (pairs of source and desti-
nation web pages) from a circa 1999 crawl of CS department webpages, derived from
the Stanford WebBase project [Hirai et al. 2000]. In the Spring, we used subsets of the
Westbury lab corpus of Usenet messages [Shaoul and Westbury 2011]. In both cases,
we pre-loaded a copy of the data in the cloud (specifically, Amazon’s S3 storage service)
where it could be quickly accessed by student code running in EC2.

MapReduce relies on record-level parallelism in the Map phase. For Hadoop, this is
arranged by using data in a particular format that the framework can split correctly.
Given a large dataset not designed for processing with Hadoop, some work is required
to put it into the appropriate format. In each semester, staff built special tools for this.
We have found that it is valuable to share these conversion tools with students so that
they could create their own test data.

We had students produce both the program for their project and answer some ques-
tions about their experiences. Some of these questions were merely intended to verify
that the students ran their program at scale. We asked students for part of the output
of their program over one of our large datasets. We also asked students to measure the
efficiency of their programs. For two different numbers of virtual machines, we had
students compute the processing rate. In order to verify their calculations, we asked
students to provide their raw runtime measurements.

To draw attention to the economic aspects, we also asked students more conceptual
questions. We had them express their processing rate both in terms of data per unit
time and in terms of cost (if they were paying the advertised commercial rate) per
unit data. We had students compare the costs when running with different degrees
of parallelism. We asked them to explain the difference qualitatively; in most cases,
the speedup would illustrate Amdahl’s Law naturally. Due to the pay-as-you-go billing
model, increased cost per unit of data corresponds to a less-than-ideal speedup.

Originally, our MapReduce assignments used C to match other assignments in the
course. This relied on Hadoop’s language-neutral “streaming” mode 3, which executes
an external program for each Map and Reduce task. This caused several problems; as
we discuss below, debugging in this environment was a significant challenge. While
not a formal prerequisite, most students taking our course had some experience in
Java or a C-like language. Hence, we switched from C to Java for the Spring offering of
the course. Switching to Java permitted our assignments to use the better supported
Java API to Hadoop. It also meant that we could cover MapReduce early in the course,
without needing to first teach students string manipulation in C.

3.4. Payment Models
Amazon and other Infrastructure-as-a-service cloud providers use a post-paid billing
model. Users supply a credit card number when they create their accounts. Users then
use the provider’s API, command line tools, or web interface to request resources,
which are then made available. At the end of every month, users’ credit cards are
billed for the previous month’s usage. There is no way for users to impose a cutoff be-
yond which further requests will be denied. The Cloud unit of our course was funded by

3http://hadoop.apache.org/common/docs/r0.20.0/streaming.html

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January 2012.

A:8 A. Rabkin et al.

an education grant from Amazon Web Services. Even so, Amazon requires a payment
card for each account, which will be billed if usage exceeds the amount of the grant.

Our grant was for $100 per student per semester, the standard size offered by Ama-
zon. From our research experience, we knew that cloud usage could easily exceed ex-
pectation. We anticipated that most of our usage would occur shortly before the dead-
line. We wanted to have enough slack in our budget to ensure that we would not ex-
haust the budget in this pre-deadline peak. We also wanted to reserve some funds so
that students who made mistakes and needed extra resources could still complete the
assignment.

We had a choice of whether to have a separate grant per student or a large lump-
sum for the course. The former would have required students to supply their own
credit card, in case they exceeded the grant. We thought this was inappropriate. Stu-
dents agreed: In the Fall semester, we surveyed the students on whether they would be
comfortable signing up for an EC2 account with their credit card for backup billing.4

Approximately a third of students responded; half of these said they would not be
willing to risk their own money. Consequently, we chose to have a single Amazon ac-
count for the class, with subaccounts for each student. An advantage of this lump-sum
approach is that the savings from frugal students could be directly applied to their
more profligate or unfortunate classmates. However, this required us to create wrap-
per scripts for all the tools that we expected students to need rather than allowing
students to use existing commercial tools.

In both semesters, we provided students with scripts to launch a Hadoop MapRe-
duce cluster on Amazon’s Elastic Compute Cloud (EC2) and run programs on it. These
scripts were responsible for the necessary accounting, access control, and billing. They
were based on Cloudera’s Hadoop scripts [Cloudera, inc. 2011], modified to access our
shared account and integrated with the local user account structure in our environ-
ment for accounting.

4. EVALUATION
This section evaluates our experience in several dimensions. We begin by describing
the quality of student work. Next, we describe the parallel speedups that students saw.
Last, we report student satisfaction; not only did students learn, but they were excited
by it.

4.1. Assessing Student Learning
We did not perform explicit assessment of our curricular innovation. Instead, we use
the grades and grading rubric from the course to measure our success.

Grading had three components. As noted above, submission was in two parts: a
checkpoint requiring students to submit working code (in the single machine case),
and the final submission requiring evaluation of working code in the cloud. A quarter
of the points were assigned by autograding the checkpoint, another 45% from having
working code at the final submission, and the remaining 30% from manual grading of
student short-form responses.

4The wording of the question was as follows: Amazon Web Services is set up for companies rather than for
students, so the way you get an account is to get an activation key (which we have) and then supply a credit
card number as a backup in case you exceed your initial allocation. We think you’ll only use 20% of your
allocation for both your lab and your project, so we think no one will get close to exhausting their allocation.
(The AWS model is to let you do your work and then charge, rather than to terminate your work in mid flight
once the account is empty.) We’re trying to find another solution, but it may be that we need to supply a credit
card number. Please tell us your (anonymous) opinion about using your credit card as backup:
- I willing to supply a personal credit card number
- I am NOT willing to supply personal a credit card number

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January 2012.

Using Clouds for MapReduce Measurement Assignments A:9

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

G
ra

de

Percentile

Fig. 1. Distribution of student grades. More than 80% of students had working code and sensible answers
to questions. Nearly half did perfectly.

To get full credit, students needed to measure runtime, compute speedup, explain
what they saw, determine the total cost and evaluate cost-per-gigabyte. We intended
these questions to make sure students thought about the economics of cloud comput-
ing: they should see the approximate scale of costs involved in a sizable computation.

The results are shown in Figure 1. As can be seen, the distribution skews high. The
median was 97.5% – nearly perfect – and even the 20th percentile was 90 points out
of 100. Based on our grading rubric, this implies a substantial level of proficiency. In
particular, it implies that student code worked correctly and that the students had
good answers to most or all of our questions.

From these grades we can draw some inferences about student learning. More than
80% of students had working MapReduce programs. The students were able to run
those programs, and had a good understanding of what those programs cost to run.

4.2. Experiencing Parallelism and Big Data
Figure 2 plots the reported parallel speedups observed by students. Most students saw
more than a speedup of 1.5 times when they increased their cluster sizes by a factor of
1.8; few saw more than 2. Seeing this speedup was a good result. Most students saw a
sizable but sublinear speedup, the right expectation to have for parallelism in general.

That some students saw anomalous speedup is also useful pedagogically. Perfor-
mance variation in clouds (or other distributed systems) is an important and inevitable
fact. Students benefit from seeing that it happened to them or their classmates at least
some of the time. Variation in performance appeared to come from two sources in our
students’ experiences: from variation in I/O speeds and from spurious failures.

Although the performance of CPU and memory resources is quite consistent, I/O iso-
lation is much harder, especially for less powerful virtual machines, which must share
NICs and disks with other virtual machines. Since data-intensive MapReduce pro-
grams necessarily perform a lot of I/O, some students reported substantially different
runs of the same program.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January 2012.

A:10 A. Rabkin et al.

speedup (times faster)

st
ud

en
ts

0.5 1.0 1.5 2.0 2.5 3.0

0
50

10
0

15
0

2 2
19

89

129

71

7 1 0 1 2 0 0 0

Fig. 2. Speedups observed by students. Most students saw a substantial but sub-linear speedup, as desired.

The cause of the most substantial performance anomalies students observed was
failures. Hadoop MapReduce usually recovers automatically from failures, but natu-
rally, the computation completes more slowly. A small number of our students reported
very long run times from one node of their cluster failing in such a way that Hadoop
needed the node to timeout to recover.

We asked students to take the median of three measurements. This meant that their
results would not be seriously affected by one-time anomalies. Nevertheless, some
these anomalies will persist for an entire session with multiple measurements. Slow
I/O performance (by up to a factor of 2.5) can be caused by interference with other
VMs [Zaharia et al. 2008], and failed VMs are unlikely to recover without manual
intervention. Consequently, only students ran measurement collection run multiple
times (for example, because their code had a bug the first time) were likely to experi-
ence performance variation as variance within measurements on the same size cluster.
Most students observed the effects of performance variation in an anomalous speedup
number or through very different runtimes versus their peers.

4.3. Student Satisfaction
We now turn to quantitative evaluation of how well our course ran in terms of student
satisfaction. At the end of the Spring semester, we administered a survey to our class.
We asked students to rank the four class projects in terms of value. The four projects
were MapReduce, writing a MIPS emulator in C, writing an optimized matrix-multiply
program, and designing a pipelined processor at the logic-gate level. The second and
fourth of these are routine and well-debugged class projects, with the last of these
usually being very popular.

Thirty percent of students thought MapReduce was the most valuable, and another
thirty percent listed it as second-most-valuable. The MapReduce assignment came in
second, overall. We conclude that students are enthusiastic about the assignment, even
given its rough edges and challenges.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January 2012.

Using Clouds for MapReduce Measurement Assignments A:11

We asked students explicitly whether they would advocate keeping or replacing the
project. 45% of students suggested keeping unequivocally, and another 47% marked
“There are pros and cons, but better to keep it.” Only 8% marked “better to drop” or
“definitely drop.”

Several students thought that the project was valuable to them professionally. One
student commented “Too many employers are looking at Cloud Computing for it to be
dropped from the curriculum - it’s good to give students at least an intro to the subject.”
Another noted that “employers at job fairs really seemed to like it!”

The students who were dissatisfied primarily focused on programming language is-
sues. A minority of students struggled because they had only minimal Java proficiency
coming in. This was not a universal problem; many students had comments like “I
didn’t know Java, and though I missed points for a few small things, the project was
overall definitely still worth it.”

5. EXPERIENCES
Above, we presented an evaluation of our educational outcomes. We now broaden our
scope to assess additional aspects of our innovation. We emphasize cost management,
since being able to manage machines effectively is necessary for using the cloud for
lower-division instruction. When using the public cloud, the cost per student becomes
visible to both instructors and pupils in a way that is not currently common in com-
puter science.

We start by describing our cost-control measures and what was required for pro-
visioning and management; we follow by exploring the influence of staff quality and
describing the aspects that do and do not require MapReduce or cloud expertise.

5.1. Provisioning
Using a cloud computing provider was effective for supplying students with large com-
pute resources for short periods. Even though we had many hundreds of students and
most students did their work close to deadlines, no one ran out of machines. The cost
was relatively modest, around $45 per student in the Spring and around $25 per stu-
dent in the Fall. In the Fall, with limited experience, we opted for medium-size in-
stances, with 2 cores each. In the Spring, we decided that it was worth the expense to
give students experience with modern datacenter-standard hardware, and used 8-core
machines.

In the Spring, peak instantaneous usage was around 500 8-core virtual machines:
we instructed students to time their programs on two cluster sizes, 5 and 9 machines,
and compare the timings. Obtaining and managing a similarly capable physical cluster
would have been much more expensive.

Although Amazon could handle the load of our course, obtaining the computing re-
sources was not simply a matter of signing up online as cloud computing is tradition-
ally imagined. All our usage went through one account with Amazon. Amazon requires
approval for an account to run more than twenty virtual machines, and these approvals
are usually granted as a matter of course.

Amazon is much more reluctant to approve large requests over a thousand machines,
especially without strong evidence of an ability to pay for sustained usage at that scale.
The potential peak for our assignment was approximately 3000 virtual machines (9
VMs per student and 320 students). We worried that if most of the class worked on
the assignment simultaneously near the deadline, we might actually hit the limit. We
asked Amazon to increase our limit, but we only received capacity for about a third
of our maximum usage. So we crossed our fingers, hoped that a sufficient number of
students would do the assignment early, and accepted the thousand-instance limit.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January 2012.

A:12 A. Rabkin et al.

0
10

0
30

0
50

0

time

V
M

s
ac

tiv
e

Sat Tue Fri Mon Thu Sun

Fig. 3. Number of active virtual machines on our course account in the Spring semester over time. The
peak (over 500 virtual machines) occurs during the day the lab assignment was given. The second peak is
the project due date.

Happily, this posed no problem in practice, as our peak usage of ‘only’ 500 machines
and Figure 3 shows.

5.2. Staffing
In developing our MapReduce unit, we had the advantage of a highly MapReduce-
literate course staff. The high-level direction of the MapReduce unit was set by the
last two authors of this paper (Katz and Patterson) both of whom have done significant
research on clouds and MapReduce. The details of the MapReduce assignments were
fleshed out by the two student authors of this paper (Rabkin and Reiss) – both of
whom have substantial experience with clouds and Hadoop, and both of whom have
done significant implementation work on the underlying framework.

This invites the question of how similar assignments would work with staff whose
expertise is otherwise. We can offer two lines of evidence on this question. During the
2010-2011 academic year, our primary focus, our course had five additional teaching
assistants. These staffers did not have a deep background in Hadoop or in cloud com-
puting. Even so, they were able to give useful aid to the students. One TA commented
that “most of the projects had their unique hangups and this one wasn’t noticeably
worse than, say, no one having a clue how to start optimizing linear algebra code.”
(This was another new course project that was prompted by our emphasis on paral-
lelism.)

Subsequent course offerings had a course staff with comparatively weak background
for a big data unit. Even so, the staff was able to devise new big-data problems for
students to work on. They used PageRank for the project. This worked well. The as-
signment used a comparatively small dataset (less than a gigabyte), resulting in low
speedup ratios (below 1.5). This is a pedagogically useful experience for students, since
poor parallel scaling on small problem instances is a common phenomenon.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January 2012.

Using Clouds for MapReduce Measurement Assignments A:13

Most of the difficulties the Fall 2011 staff experienced were related to the cloud-
instance launching and accounting scripts, not the underlying Hadoop or cloud tech-
nologies. This reassures us that incorporating cloud-based MapReduce assignments
can be done without especially expert staff. Infrastructure is required, but, while build-
ing this infrastructure is potentially time-consuming, it does not rely on deep exper-
tise. Over time, we believe improvements by cloud computing providers are likely to
mitigate these infrastructure requirements.

One aspect does require significant expertise, however: picking a project assignment.
This must satisfy several constraints. There must be a suitable data-set available.
The assignment must have a moderate runtime, large enough to amortize scheduling
overhead and demonstrate parallel speedup, small enough not to be overwhelming. It
must also be different enough from standard examples that students cannot easily find
a solution online.

6. LESSONS LEARNED
On the whole, our experiment with using the public cloud for undergraduate core
courses worked well. Even so, we learned several negative lessons. This section de-
scribes those lessons and what we intend to do differently in future offerings of the
course.

6.1. Billing and Account Support
Using a commercial cloud system forced us to consider the properties that shared
cloud-like infrastructure should ideally have for academic instructional use.

— Student work is private. The cloud provider should provide per-student access control
so that students do not have automatic access to one another’s work.

— Students are resource limited. No student should be able to consume an excessive quan-
tity of computational resources.

— Billing is flexible. One might imagine having student costs paid directly by the student,
paid out of instructional funds, or implicitly supported by overhead funds. The cloud
system should not impose a specific model that may not work for all institutions.

— Costs are centralized. While each student should be resource-limited, staff should not
have to manually parcel out funds to each student.

Today’s cloud providers do not completely meet these goals. Amazon for instance cur-
rently does minimal resource limitation; the system will not prevent a careless user
from incurring a vast bill. However, Amazon meets most of the rest of these require-
ments, and we were able to write custom code to make the system usable.

Many different models for cloud services could meet these requirements. Commer-
cial vendors may adapt their products for academic customers. Alternatively, we might
see institutional clouds, perhaps without fine-grained accounting. We might see cloud
resources treated similarly to studio materials in art classes, with students partly or
fully responsible for their own costs.

6.2. Debugging
One of our pedagogic goals was to have students experience real-world big data pro-
gramming and debugging. This has two distinctive challenges. First, big data is noisy
data, and this means that some thought is required to determine what correct behavior
will be. Second, distributed debugging is harder than local debugging.

At one point, we asked students to run various text-processing programs on a few
tens of megabytes of sample data derived from the Usenet corpus. Students were
alarmed to discover that the first page of output was exclusively words like 0, 00, and
000. After some thought, the staff and students realized that this was not evidence of

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January 2012.

A:14 A. Rabkin et al.

a bug. The assignment had defined a word as “any text separated by whitespace”; this
meant that a number with spaces around it would qualify as a word. Given a large
enough text corpus, such “words” would inevitably appear. Given the usual ASCII sort
order, such words would consume the first few pages of output.

In one sense, this experience was caused by the staff ’s failure to carefully test the as-
signment on a large dataset. In another sense, this was a routine part of working with
large data sets and therefore an educationally valuable experience. A large dataset
will often have unexpected elements or elements that interact unexpectedly. Students
benefit from learning that “big data” is usually “messy data.”

The pain of distributed debugging was another characteristic experience of real-
world MapReduce programming at scale. In the Fall 2010, using C, several students
received a very pointed lesson in the importance of local testing and defensive pro-
gramming. Buggy C programs often fail with segmentation faults. Locally, these can
be diagnosed with a debugger such as GDB. But when the C program is run inside
Hadoop, there is no opportunity to do so. Hadoop Streaming’s diagnostics for programs
that fail without outputting an error message themselves were very poor. Hence, trou-
bleshooting can be difficult, even for experienced course staff.

In the Spring, using Java, debugging was easier. Typically, when Map or Reduce
tasks fail, a stack trace is recorded in the logs. This meant that staff, at least, could
work out where student programs had gone awry. Students had difficulty debugging,
however, since reading and understanding stack traces is not a skill that is emphasized
or taught in our lower-division data structures course, where most students learned
Java. Nor had students ever had significant practice coping with test cycles measured
in minutes, rather than seconds. Forcing students into a more demanding (and real-
istic) debugging scenario thus exposed a gap in their previous CS education that we
tried to remedy as best we could.

Subsequent offerings of the machine structures course have had students do the
MapReduce assignment in pairs. Course staff advise students that at least one member
of each partnership should have Java expertise. This seems to have worked well.

6.3. Using the Hadoop API
A distinctive aspect of our course was that we used the standard industrial MapRe-
duce implementation with lower-level undergraduates, without any attempt to wrap
it in a simpler, student-friendly interface. This appears to be an unusual educational
decision. It certainly caused some unexpected difficulties for us.

At our university, the first two semesters of the core computer science sequence
teach students the building blocks of programs — notions like iteration, recursion,
data structures, and so forth. Using system libraries is not emphasized. Learning to
use a large complex software system is completely unexplored. Being confronted with
the Hadoop API may have been the first time students ever saw a realistic API or had
to read documentation for a large software system.

The Hadoop API has some idiosyncrasies that would be absent from a ‘teaching’
MapReduce API. Probably the most notable of these are the datatypes supported for
keys and values. Hadoop requires these values to be efficiently serializable. Hadoop
can use Java serialization, but this has a substantial performance penalty. Conse-
quently, Hadoop’s API implements a parallel hierarchy of ‘Writable’ types. These types
are required to implement in-place serialization and deserialization functions. To avoid
object creation and garbage collection overhead, Hadoop reuses objects of these types –
for example, map() is likely to be repeatedly called with the same object with different
values loaded and reduce()’s iterator is likely to return the same object over and over
again.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January 2012.

Using Clouds for MapReduce Measurement Assignments A:15

This serialized object API caused some confusion for students. We mitigated this
confusion by providing templates that named usable datatypes and suggesting conver-
sions to ‘native’ Java types within map() and reduce() functions. Nevertheless, several
students experienced problems from placing Writable types in containers (for exam-
ple, attempting to use them as a key for a Hashtable). Since Hadoop reused Writable
objects, such programs would almost always produce the wrong answer without other
indications of error.

Many students complained about less subtle errors when they tried to change the
type of values produced by their mapper or reducer to a non-Writable type. We only
introduced students to a subset of the types and suggested solutions using strings to
represent multiple values (where required). A few students wanted to define custom
types and use them as map or reduce outputs, but we did not teach them how to create
a custom Writable type. We were reluctant to mention the ability to do this because de-
bugging serialization is extremely difficult: Hadoop implicitly relies on deserialization
functions reading the correct amount of input; if they do not, Hadoop may read other
data sent alongside the serialized values from the wrong place in its input stream.
Consequently, serialization bugs can easily lead to both incorrect values for serialized
types and crashes within Hadoop internal code far from when the deserialization func-
tion ran.

6.4. Efficiency
In both semesters, the staff coded and tested a simple implementation before releasing
the assignment to students. We used this to estimate performance, both in choosing the
data set size to assign students as well as to announce the performance they should
expect. In the Spring, many students produced solutions that were more than a factor
of two slower. Although our reference implementation was not specially optimized, the
simple MapReduce programs we had the students write are sensitive to overheads
from object creation, autoboxing (Java’s automatic wrapping of primitive values in
objects), string parsing, and string/number conversions. Students whose programs did
more of these than our reference implementation (for example, keeping a counter in an
Integer instead of an int or splitting a string in an inner loop) were correct but much
slower. A small number of students made poor data-structure choices, resulting in
run-times quadratic in the number of words in an input record (representing a Usenet
message). Since we were targeting a run time of around 15 minutes, the financial
effect of students’ programs running even two or three times slower than our reference
implementation was substantial.

Here again, a large-scale assignment in the cloud showed both us and the students
a previously unsuspected gap in their prior experience. After we became aware of the
slow program problem, we supplied a non-trivial local test dataset and told students
what run time they should expect on it. We also gave a brief list of ways to make
programs faster for students who were interested in doing so: avoiding object creation,
reducing the number of generated map output keys, and so on.

In future offerings, we will spend more time advising students on how to debug in
distributed contexts and how to program in a performance-conscious manner. Perfor-
mance issues fit naturally into a computer organization course, so this strikes us as a
good use of class time.

6.5. Waste
Inefficiency was not the major driver of costs; waste was. Some students accidentally
left virtual machines running idle. We had mitigated the risk of this by configuring
our scripts to automatically shutdown virtual machines after a time delay, though
initially, we did not always enable this feature. Early versions of the staff-supplied

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January 2012.

A:16 A. Rabkin et al.

cost

st
ud

en
ts

0
20

40
60

80
10

0
4

24

7874
62

35

1918
8 7 5 4 1

$0 $30 $60 $90 $120

Fig. 4. Histogram of estimated Spring semester EC2 usage per student.

wrapper scripts had a bug and would occasionally fail to terminate virtual machines
when students requested it.

A much larger problem was that some students would re-run their entire exper-
iment after any technical glitch or mistake. This repetition was responsible for the
outliers seen in Figure 4. Our management scripts were only available on the campus
hosts, so students seeking to use the cloud from home would log into campus, rather
than running directly from home. These students were generally not aware of tools
like GNU screen that would let them maintain their session on the instructional ma-
chines after a network failure. Also, students assumed incorrectly that they could not
continue using their existing EC2 session when they reconnected.

Consequently, many students would start a fresh set of virtual machines (killing
the old ones) each time they experienced a problem. Since EC2 charges for at least an
hour each time a virtual machine is started, this could get expensive quickly. Some
students who did not experience these glitches made different errors that led them
to restart machines unnecessarily — for example, assuming that each run of their
program required a fresh cluster.

This is by no means a fundamental problem. For research uses, our lab has devel-
oped a sophisticated set of deployment tools. These are able to compensate for failures
of a particular node to boot. There are open-source projects devoted to managing EC2
instances, such as Apache Whirr. As these tools mature, we expect to use them for in-
structional purposes. (At present, they are unsuitable since they do none of the logging
and accounting that we require.)

7. CONCLUSIONS
Overall, our experience was a success. Our course let every student in a large course
run their programs on comparatively large clusters of modern hardware, without
scheduling or resource contention. This experience would have been infeasible with-
out the public cloud. Students enjoyed the ability to run at a “real” scale with real

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January 2012.

Using Clouds for MapReduce Measurement Assignments A:17

tools. Student evaluation was very positive of using Hadoop, even despite rough edges
and difficulty.

Using an industrially-developed tool in a lower-level course offered advantages but
posed problems. Using a standard tool meant that standard online tutorials could sup-
plement instruction. It also exposed students to implementation aspects that were
irrelevant to our primary educational goals and that caused some confusion.

Though current cloud billing models posed some difficulties, per-pupil costs were
not a problem. In the Spring version of our course, we only spent $45 per student on
average, less than half the standard grant, or $15000 total. This was small compared
to the overall instructional cost of the course. The per-pupil cost was comparable to a
textbook.

The vast majority of students were conscientious about costs. They were generally
careful to not waste computing resources. The ones who were careless were usually
quick to respond when notified that they had accidentally kept instances running.
Cost management was a small fraction of the staff time for the assignment.

The course also succeeded in pedagogic terms. Students had the opportunity to ex-
ercise their programming and debugging skills in a new and challenging environment.
They were able to experience parallel performance at a scale that would have been un-
thinkable without the cloud. And they were able to experience cutting-edge tools that
helped them grow professionally.

ACKNOWLEDGMENTS

We are grateful to Brian Harvey, Dan Garcia, and Colleen Lewis for their advice in writing this article.
Several past CS61C staff members were very helpful in describing their experiences, particularly Andrew
Waterman and Brian Gawalt. The experiences described in this article were funded by an Amazon Web
Services instructional grant.

REFERENCES
ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A., KATZ, R., KONWINSKI, A., LEE, G., PATTERSON, D.,

RABKIN, A., ET AL. 2009. Above the Clouds: A Berkeley View of Cloud Computing. Tech. Rep. 2009-28,
UC Berkeley, http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html.

BROWN, R. A. 2009. Hadoop at home: large-scale computing at a small college. In Proceedings of the 40th
ACM technical symposium on Computer science education. SIGCSE ’09. ACM, New York, NY, USA,
106–110.

CHAMBERS, C., RANIWALA, A., PERRY, F., ADAMS, S., HENRY, R. R., BRADSHAW, R., AND WEIZENBAUM,
N. 2010. FlumeJava: easy, efficient data-parallel pipelines. In Proceedings of the 2010 ACM SIGPLAN
conference on Programming language design and implementation. PLDI ’10. ACM, New York, NY, USA,
363–375.

CLOUDERA. 2012. Crunch. https://github.com/cloudera/crunch.
CLOUDERA, INC. 2011. Configuring and Running CDH Cloud Scripts. Retrieved August 31, 2011 from

https://ccp.cloudera.com/display/CDH2DOC/Configuring+and+Running+CDH+Cloud+Scripts.
COUCH, A. 2011. Comp150 CPA. Retrieved August 21, 2011 from http://www.cs.tufts.edu/comp/150CPA/.
DEAN, J. AND GHEMAWAT, S. 2008. MapReduce: Simplified Data Processing on Large Clusters. Commun.

ACM Volume 51, Issue 1, 107–113.
GARRITY, P., YATES, T., BROWN, R., AND SHOOP, E. 2011. WebMapReduce: an accessible and adaptable tool

for teaching map-reduce computing. In Proceedings of the 42nd ACM technical symposium on Computer
science education. SIGCSE ’11. ACM, New York, NY, USA, 183–188.

GATES, A., NATKOVICH, O., CHOPRA, S., KAMATH, P., NARAYANAMURTHY, S., OLSTON, C., REED, B.,
SRINIVASAN, S., AND SRIVASTAVA, U. 2009. Building a high-level dataflow system on top of Map-
Reduce: the Pig experience. Proceedings of the VLDB Endowment 2, 2, 1414–1425.

HIRAI, J., RAGHAVAN, S., GARCIA-MOLINA, H., AND PAEPCKE, H. 2000. WebBase: A repository of web
pages. In Proceedings of the 9th international World Wide Web conference on Computer networks. North-
Holland Publishing Co., Amsterdam, The Netherlands, The Netherlands, 277–293.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January 2012.

A:18 A. Rabkin et al.

JOHNSON, M., LIAO, R. H., RASMUSSEN, A., SRIDHARAN, R., GARCIA, D. D., AND HARVEY, B. 2008. Infus-
ing Parallelism into Introductory Computer Science Curriculum using MapReduce. Tech. Rep. EECS-
2008-34, UC Berkeley, http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-34.html.

KIMBALL, A., MICHELS-SLETTVET, S., AND BISCIGLIA, C. 2008. Cluster computing for web-scale data
processing. In Proceedings of the 39th SIGCSE technical symposium on Computer science education.
SIGCSE ’08. ACM, New York, NY, USA, 116–120.

LIN, J. 2011. Data-Intensive Information Processing Applications. Retrieved August 21, 2011 from http:
//www.umiacs.umd.edu/~jimmylin/cloud-2010-Spring/info.html.

MALAN, D. J. 2010. Moving cs50 into the cloud. J. Comput. Small Coll. 25, 111–120.
PAGE, L., BRIN, S., MOTWANI, R., AND WINOGRAD., T. 1998. The PageRank Citation Ranking: Bringing

Order to the Web. Tech. rep., Stanford Digital Library Technologies Project.
SHAOUL, C. AND WESTBURY, C. 2011. A usenet corpus. Retrieved August 21, 2011 from http://www.psych.

ualberta.ca/~westburylab/downloads/usenetcorpus.download.html.
THUSOO, A., SARMA, J. S., JAIN, N., SHAO, Z., CHAKKA, P., ANTHONY, S., LIU, H., WYCKOFF, P., AND

MURTHY, R. 2009. Hive: a warehousing solution over a map-reduce framework. Proc. VLDB Endow. 2, 2,
1626–1629.

ZAHARIA, M., KONWINSKI, A., JOSEPH, A. D., KATZ, R., AND STOICA, I. 2008. Improving MapReduce
performance in heterogeneous environments. In Proceedings of the 8th USENIX conference on Operating
systems design and implementation. OSDI’08. USENIX Association, Berkeley, CA, USA, 29–42.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January 2012.

