How Hadoop Clusters Break

Ariel Rabkin and Randy Katz
EECS Department, UC Berkeley
Berkeley, California, USA
{asrabkin,randy } @cs.berkeley.edu

Abstract

This article describes lessons from examining a sample of several hundred sup-
port tickets for the Hadoop ecosystem, a widely-used group of “big data” storage
and processing systems. We give a taxonomy of errors and describe how they are
addressed by supporters today. We show that misconfigurations are the dominant
cause of failures. We describe these misconfigurations in detail. Using these fail-
ure reports, we identify some of the design “anti-patterns” and missing platform
features that contribute to the problems we observed. We offer advice to develop-
ers about how to build more robust distributed systems. We also advise users and
administrators how to avoid some of the rough edges we found.

Keywords: reliability, distributed systems, cloud computing, big data, system
administration.

Ari Rabkin Bio

Ari Rabkin is a PhD candidate at UC Berkeley. He is interested in software
quality and software intelligibility. He has contributed to several open source
projects, including Hadoop, the Chukwa log collection framework, and the JChord
program analysis toolset. He spent a summer at Cloudera, inc, in the course of
which he conducted the investigations described here. He previously attended Cor-
nell University (AB "06), and can be reached at asrabkin@eecs.berkeley.
edu

Randy Katz Bio

Randy Howard Katz is the United Microelectronics Corporation Distinguished
Professor in Electrical Engineering and Computer Science at UC Berkeley. His
recent work has focused on cluster scheduling and Cloud-based logging and anal-
ysis. He received his undergraduate degree from Cornell University, and his M.S.
and Ph.D. degrees from Berkeley. He is a Fellow of the ACM and the IEEE,
and a member of the National Academy of Engineering. He can be reached at
randy@eecs.berkeley.edu

1 Introduction

“Big data” is all the rage. Ten years ago, few software developers worked on dis-
tributed systems with dozens of nodes. Today, the rise of the cloud and of software-
as-a-service have made such systems increasingly common, and developers are
responding by developing systems tuned for their workloads. New systems for
large-scale data storage and processing are announced regularly. The dominance
of relational database management systems is now in question, with “NoSQL”
data stores becoming a major area of development. This rapid innovation appears
unlikely to end soon.

Scalable distributed systems can be formidably complex. They challenge cur-
rent engineering practice in several ways. This has driven the growth of the big-
data support industry. Cloudera is one such support provider, selling support for
the Hadoop ecosystem, which includes some of today’s most widely deployed “big
data” systems. This article describes the causes of failures seen by Cloudera sup-
porters. This article draws on that experience to advise users, developers and ad-
ministrators how to build more reliable systems.

Hadoop was originally a filesystem and MapReduce implementation. In the
last several years, it has grown into a complex ecosystem, including a range of
software systems. Additional members of the Hadoop ecosystem include HBase
(a distributed table store), Zookeeper (a reliable coordination service), and the Pig
and Hive high-level languages that compile down to MapReduce. Throughout this
article, we use “Hadoop” to mean the ecosystem as a whole, not just the filesystem
and MapReduce components.

This ecosystem is the most prominent example of today’s open-source big data
processing tools. (The project won the 2012 InfoWorld “Technology of the Year”
award in recognition of this.) It is mature enough that companies like eBay, Ya-
hoo!, and Facebook, use it for critical business processes. As a result, Hadoop is
the place to look for lessons on how to build and operate reliable systems.

Our results are based on examining a sample of 293 customer support cases
(“tickets”) at Cloudera, from the spring and summer of 2011. This viewpoint gave
us access to experiences from dozens of distinct user sites, which would have been
difficult to obtain in any other way. Our sample excludes purely informational or
administrative cases as well as those where the definitive root cause of the failure
was not recorded. The remaining cases cover a range of open-source Hadoop
software. Our conclusions are therefore based on the study of an ecosystem, not
just a single project.

One of us (Rabkin) manually labelled all the support cases in our sample with
the established root cause. Since our observations come from a software support
vendor, we see only those failures that users could not diagnose themselves. For
example, our data set would not include a power supply failure. Our data does,
however, include problems that users could not diagnose unaided, but that turned
out, after investigation, to be due to hardware or operating system defects.

Note that we are studying failures that required support. These only partly
overlap with bug reports to developers. A bug might cause trouble for many users
(in which case we will count it several times), but only be entered once in a bug-
tracking database. Conversely, bug reports are filed for defects that might not
have ever caused trouble for an operational deployment. For instance, bug reports
sometimes cover cosmetic defects, documentation errors, and so forth. Our data
set does not include issues of this type.

When a production system fails, there is usually plenty of blame to go around.
The developer should have handled the failure cause more gracefully. The user or
administrator could have avoided using the system in such a way that the failure
cause arose. The developer could have supplied tools to monitor and test against
known failure causes. The user could potentially have pressed the developer to
address reliability and ease of use early in the system life-cycle. Because the con-
cerns of developers are entangled with those of users or administrators, this paper
adopts both perspectives. We outline some do’s and don’ts for big-system building
and also describe how users and administrators can best cope with the limitations
and rough edges they will encounter using Hadoop today.

2 Observations

The main result of our study is that there are no magic bullets for improving ser-
vice reliability. No one cause of failures predominated. The most common specific
cause of failure accounted for no more than 10% of support cases. Figure 1 breaks
down the number of cases and supporter time by category of root cause. (Sup-
porter time is the estimated time spent by a supporter working on the case. For
confidentiality reasons, we show percentages, rather than absolute numbers.)

The remainder of this section drills down on the specific causes of failures.
We begin by describing the breakdown by the kind of root cause. Following that,
we go into more detail about system problems and misconfiguration. We believe
these two categories have the most lessons to teach developers and users of other
software systems.

40
35f N time |
301 B coses ||

Percentage

Figure 1: Breakdown of support cases and supporter time by issue category. For a
given category, the ratio of “time” to “cases” is the average time spent resolving each
issue in that category.

2.1 Overview

We classified cases based on the required action to resolve the issue, after diagno-
sis. Going in order from most to least common:

e Misconfiguration includes Hadoop configuration plus operating system-level
but Hadoop-specific permissions and options.

e Bugs required a patch to some part of the Hadoop platform. (This is a de-
liberately narrow definition: problems posed by unclear documentation or
misleading user interfaces are generally not resolved by a patch, and hence
are not classified as bugs.)

e Operational issues are cases where the user is operating the system wrongly.
For example, the filesystem may not restart normally if it was previously
killed abruptly while many files were open and partly-written.

o A system problem required a change to the underlying system in a non-
Hadoop-specific way. Most of these were caused by networking problems.

o [nstall problems are those caused by a faulty installation. This often meant
having inconsistent library versions or relying on optional components that
were not installed. Compression libraries were a common source of trouble.

e User bugs required changes to user code, often because the user misunder-
stood the Hadoop MapReduce API.

e Hardware problems were the root cause for a handful of issues. These were
primarily networking faults that resulted in nodes appearing to fail intermit-
tently.

Figure 2 shows the relative frequency of different error causes for each major
application supported. (We do not display absolute numbers, again for confiden-
tiality reasons.) This data gives some insight into how well our results generalize
across different software systems.

The same general categories apply to each of the applications we looked at.
However, there are a few notable differences between applications. System prob-
lems often manifest in HDFS, the filesystem at the bottom of the stack. MapRe-
duce is highly memory-bound, and hence prone to misconfiguration. Hive is a
younger, less mature system, with a high bug rate.

Figure 3 breaks down system problems. As can be seen, network problems are
dominant. This category also included some problems due to broken JVM versions
or improper my sql installation. (The Hive data processing system uses mysql to
store metadata.)

Misconfiguration represents the largest category of both cases and of reported
supporter time. It therefore deserves special scrutiny. In Figure 4, we break down
the misconfiguration category. As can be seen, memory-management problems
were especially common. The next section will discuss them in detail. After that,
we supply more detail about the remaining misconfiguration categories.

2.2 Memory Misconfiguration

Approximately a third of all misconfiguration problems were caused by some form
of memory mismanagement. Hadoop has many options for controlling memory
allocation and usage, at several levels of granularity. Working from the bottom

Error type by application

100 bug

system_problem

80

install/operational

111

60

misconfiguration

40

Percentage

Figure 2: Fraction of issue types by application supported.

up, there are configurable buffers, such as the MapReduce sort buffer. Each Java
process itself has a configured maximum heap size. For each daemon, there is an
OS-imposed limit on the maximum amount of RAM to be used, the ulimit. For
MapReduce, the user can tune how many concurrent tasks to execute on each host.
And all tasks must fit into physical memory.

Hadoop does not check that these options form a sensible hierarchy. It is possi-
ble for the combined heap size for all the daemons on a machine to exceed physical
memory, or for the JVM to request more than the OS-imposed limit. Depending
whether the JVM heap size, OS limit, or physical memory is exhausted first, this
will cause an out-of-memory error, JVM abort, or severe swapping, respectively.

Another common source of memory-management problems is that a normally-
small datastructure becomes unexpectedly large. The Hadoop MapReduce master,
the Job Tracker, keeps a summary of past job execution in memory. This history is
normally small and so Hadoop does not track or manage its size. But if a site runs
many jobs with many tasks, it can grow large. This will cause slowdowns due to
garbage collection overhead, and ultimately out-of-memory errors.

The difficulty of memory management is partly attributable to the Java plat-
form. Consider a team of programmers writing a buffer that automatically frees
old items to manage memory use. Since Java lacks an equivalent of C’s sizeof,
the programmers must do all the accounting themselves. Language support for
estimating memory usage would be preferable, easing code reuse. It could also

Percentage of all cases

%)
3

Tirg Wy

&
@
L
)
~

Figure 3: Breakdown of system problems. Network services dominate this category.

capture memory overheads imposed by the runtime. Failing that, projects might
adopt standard and reusable memory-conscious classes and data structures.

2.3 Other misconfigurations

Memory is not the only aspect of the system prone to misconfiguration. Hadoop
services, especially the HBase table store, will keep many files and sockets open.
The number of available file handles can be exhausted if it is not increased well
above the system default. Disk space, too, can be exhausted if not managed prop-
erly.

In addition to managing these resources, Hadoop and HBase rely on users to
statically pick maximum sizes for various thread pools, including the sending and
receiving sides of the MapReduce shuffle. If there are too many threads requesting
data for each server thread, the requesters will experience frequent timeouts, lead-
ing to jobs aborting. This sort of issue is marked as “thread allocation” in Figure
4.

We noticed two other common sources of trouble. One was permissions and
account management, accounting for more than 10% of misconfigurations. Mis-
matches between the user accounts for MapReduce jobs and those on the local
filesystems was a particular source of trouble.

A last problem category we noticed is malformed or misplaced configuration
files. These can be hard to diagnose because if a configuration file is unusable or
not found, Hadoop will use default values. These defaults may be sufficient for
some use cases or workloads, but then result in failures under heavy load or when
a user tries to use an advanced feature.

14
121 N time |
10 B coses |

Percentage of all cases

Figure 4: Breakdown of misconfigurations. Resource allocation (including memory) is
the major cause of configuration problems.

3 Support Responses

Our data set gives us insight into the support process, not only into failures. De-
bugging often requires several rounds of interaction and exploration. Sometimes,
the initial problem description from users and the attached logs and other data, are
sufficient to diagnose the problem immediately. In other cases, it takes substantial
time to find the key evidence or to test various possible diagnoses.

We investigated whether retrieving logs and data is a major support bottleneck.
Figure 5 is a CDF showing when logs and attachments are added to a support
ticket. The X-axis is time, scaled relative to the duration of the case. As can be
seen, a large fraction of all the logs that will ever be available are present near the
start of the case, but both logs and attachments continue trickling in throughout. If
getting logs and attachments was the primary barrier to solving a case, we would
expect a preponderance of arrivals near the finish time. Instead, there is an initial
spurt as users describe the problem and supporters ask for logs, and then a roughly
constant arrival rate. This shows that much of the work happens after logs are
made available as supporters and users iterate through possible diagnoses.

Diagnosis time varies significantly across different types of problems. Install
issues tend to be particularly quick to diagnose and fix. They are often determin-
istic and often manifest at startup, leading to quick debug cycles. Bugs and mis-
configurations are comparatively difficult, since they can require days or weeks of
testing to verify that a problem has been fixed.

Sometimes, a reboot is all it takes to resolve a problem. In 11 of our 293 tickets,
killing and restarting solved the problem. This was a particularly common remedy
in cases where a process had failed but not exited, and was therefore blocking a
port.

—* Logs

—* Attachments

Cumulative fraction

0.2f 1

0 20 40 60 80 100
Percent of case duration

0.0

Figure 5: Arrival of logs and attachments, scaled to length of each support case.

4 What makes big-data different? [Possible side-
bar]

Several previous publications have discussed real-world failure causes. Jim Gray’s
“Why do computers stop and what can be done about it” is a prominent example,
discussing failure data of Tandem computer deployments [3]. Huang et al include
data about failures seen in production by IBM [4]. Oppenheimer et al. looked
at failure data from Internet services in the early 2000s [5]. Recently, Yin et al.
have looked at misconfigurations in a variety of open-source and proprietary sys-
tems [8].

Like this past work, we found that human mistakes are a major source of trou-
ble, especially misconfiguration. Unlike this past work, we found that resource and
thread allocation were major issues, while they are barely mentioned in past stud-
ies. We suspect that Tandem users and interactive web services were optimizing
for up-time and were mostly not subjecting their system to continuous intensive
load. In contrast, users of big-data systems are trying to get the most performance
possible out of their hardware. This means that they are more likely to operate at
close to the maximum CPU, memory, and disk utilization. The price of this more
aggressive usage is new failure modes.

We suspect that the open source development process is not the dominant con-
tributor to the problems we saw. There are examples of easy-to-use open-source
software for end users, such as the Firefox web browser or the Eclipse program-
ming environment. In contrast, proprietary databases (which, like Hadoop, are
designed to fully utilize a machine’s resources) often require specialized adminis-
trators to attain optimal performance.

5 Limitations

The data in this paper was the result of labeling by a single individual. There is
a possibility of bias or systematic mistakes. We regularly checked our labels with
other members of the support team to mitigate this risk.

Our data is drawn from six months in the lifespan of a single software ecosys-
tem. We are not in a position to say how the failure patterns we saw would compare
to those from a more- or less- mature software system, nor can we definitively es-
tablish how the Hadoop ecosystem compares to others. Our goal is to advise users
and developers what to watch out for, not to supply precise statistics that would
inevitably become suspect over time.

The period we studied included the beta-test period for Cloudera’s CDH3 Hadoop
distribution. As a result, we saw more bugs, particularly in MapReduce, than we
would have had we only considered problems in stable versions. Hence, our re-
sults are representative of the experiences of early adopters, not of users of final
versions.

6 Conclusion

No one cause for failures predominated in the support cases we examined. This
suggests that no single change can drastically improve the reliability of the system
in question. Rather, attention must be paid to a range of details. Put more posi-
tively, all the categories of failure we saw can be addressed by current engineering
techniques. More care in checking for and handling various out-of-resource cases
should avoid many misconfiguration problems. It should also make the remain-
ing ones simpler to diagnose. More attention to testing, particularly user-interface
testing, should reduce the number of operational and install-time problems.

There is also room for future research and development. Today, much of the
work of testing and validating configuration must be done per-site. Software devel-
opers must anticipate and separately handle many different contingencies. Ways
to systematically harden programs or to validate configuration will be a promis-
ing area for future work. All these are already active research topics, although a
general survey of reliability research is beyond the scope of this article.

Lessons for System Design [Possible sidebar]

1. Prune mutually-dependent options Memory and thread allocation in Hadoop
is done with a set of closely-related options that can easily be set incompat-
ibly. Errors involving such options accounted for most misconfigurations
and about 20% of all failures. A design-time fix would be to parameterize
the configuration space in such a way that one option corresponds to scal-
ing along the “best practices” dimension, while a second knob allows for
workload-specific or “expert” tuning.

2. Check configurations Another remedy is to build a configuration checker.
Cloudera and other vendors have released such tools for Hadoop. Ways to do
this automatically and efficiently are an area of current and potential future
research [6].

10

3. Pay attention to memory management Java provides programmers with
powerful automatically-growable data structures. This makes it easy to lose
track of the size of a given allocation. Problems can arise if a change in
workload results in some usually-small data structure becoming very large.
Better language mechanisms for managing resources are another area that
would benefit from future work.

4. Better logging Logs are commonly used to diagnose issues. Often, there
is a statement, buried in thousands of lines of irrelevance, that clearly in-
dicates the problem. Picking out the relevant bits in a long log listing is a
skill that supporters slowly develop over time. Systems should clearly dis-
tinguish “actionable” messages recommending a user action from those that
are purely informational or intended for debugging. RPC-level tracing, such
as provided by X-Trace or Dapper, would also be helpful [2, 7].

5. Design for [Configuration] change As systems evolve, options are added
and deprecated. Flexible configuration-file formats allow users to set options
that do not exist. This will happen: Users sometimes read documentation for
a version they aren’t using, and will specify options that do not apply to the
versions they have installed. They will then be puzzled when setting the
option has no effect. Have a strategy in place to look for and flag undefined
or obsolete options. (These errors were classified as *absent’ in Figure 4.)
Having a narrow XML schema for configuration would help.

Lessons for Users and Administrators [Possible
sidebar]

1. Monitor to avoid resource exhaustion The systems we studied sometimes
fail abruptly and catastrophically when resources like disk space or memory
are exhausted. Restoring to a working state may require manual intervention.
Hence, monitoring is required to avoid putting the system in such a state.
Insufficient monitoring of memory and disk space was a major contributing
cause of failures. We saw many failures of this type: resource exhaustion
was approximately 20% of all problems. This suggests that user sites (even
those with sophisticated users and administrators) would benefit from more
careful monitoring.

2. Customize and deploy cautiously Installation problems were often caused
by mixing code from different versions, either due to a partial upgrade or
by installing a new version on top of an old version. Big-data systems are
not always designed or tested for such combinations. The rapid pace of
open-source development, in particular, can result in a plethora of versions,
making comprehensive cross-version testing infeasible.

3. Test under load Misconfigurations can escape notice in a lightly loaded
system, but result in failures when the system is subjected to intensive pro-
duction workloads. Before deploying a service in production, users should
verify stability by running it under demanding workloads for lengthy peri-
ods.

4. Understand which dimensions of scale are well-tested Big-data systems
can scale in many directions. Not all of these dimensions will be equally

11

well tested. Reaching some scalability limits will be handled gracefully.
Hitting others can cause downtime. For your mix of software, will the sys-
tem respond gracefully to a CPU-limited job? A memory-limited job? A few
large objects or many small ones? The answers should be used for capacity
planning and overall system architecture.

. When in doubt, reboot firmly Partial failures are a fact of life with complex
software. A failed process can sometimes stick around, ignoring graceful-
stop commands, while still holding a lock or a port. Have infrastructure in
place to detect and kill stuck processes when it’s time to restart things. (The
Recovery Oriented Computing project came to similar conclusions [1].)

References

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

G. Candea and A. Fox. Crash-only software. In 9th Workshop on Hot Topics
in Operating Systems (HotOS I1X). USENIX, 2003.

R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica. XTrace: A Perva-
sive Network Tracing Framework. In 4th USENIX Symposium on Networked
Systems Design and Implementation (NSDI °07), Cambridge, MA, April 2007.

J. Gray. Why do computers stop and what can be done about it. In Symposium
on reliability in distributed software and database systems, pages 3—12. IEEE
Computer Society Press, 1986.

H. Huang, R. Jennings, III, Y. Ruan, R. Sahoo, S. Sahu, and A. Shaikh.
PDA: a tool for automated problem determination. In Proceedings of the 21st
USENIX conference on Large Installation System Administration Conference
(LISA’07), 2007.

D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do internet services
fail, and what can be done about it? In USENIX Symposium on Internet
Technologies and Systems, 2003.

A. Rabkin and R. Katz. Static extraction of program configuration options.
In Proceedings of the 33rd International Conference on Software Engineering
(ICSE’11),2011.

B. Sigelman, L. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver,
S. Jaspan, and C. Shanbhag. Dapper, a large-scale distributed systems tracing
infrastructure. Technical report, Google, 2010.

Z. Yin, J. Zheng, X. Ma, Y. Zhou, S. Pasupath, and L. Bairavasundaram. An
empirical study on configuration errors in commercial and open source sys-
tems. In 23rd ACM Symposium on Operating Systems Principles (SOSP),
2011.

12

