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Abstract
We present cross-sectional analyses of programming lan-
guage use and reflect upon our experience in doing so. In
particular, we directly survey 1500-13000 developers and
indirectly do so by mining 200000 repositories. Our analy-
sis reveals programming language adoption phenomena sur-
rounding developer age, birth year, work place, opinions,
gender, and choice of software repository.

We find that survey methods are increasingly accessi-
ble and relevant, but there are widespread problems in ex-
amining developers and code in particular. Prominently, we
show that analyzing software repositories suffers from the
same sample bias expected from directly polling develop-
ers. These problems question, for example, the scope of re-
sults of the increasingly common research practice of mining
software. We conclude by describing concrete practices and
opportunities for amplifying results of developer and code
surveys.

Categories and Subject Descriptors D.3.0 [Programming
Languages]: general

General Terms Languages, Human Factors

Keywords history, sociology, programming language adop-
tion

1. Introduction
The programming language design community largely fo-
cuses on technical aspects of languages: how to efficiently
implement them, how to automatically reason about pro-
grams written in them, and how to prove properties, such
as type safety, about the language itself. However, program-
ming is about more than technical aspects. Software devel-
opment is a human process carried out in a social context,
and psychological and sociological factors can make the dif-
ference between a successful language or an unsuccessful
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one. In a past publication, we called for the programming
language community to devote more attention to analyzing
the social processes that lead to language adoption [3].

There has been increasing interest in the social and psy-
chological aspects of programming. Small-scale user studies
are increasingly common and mining software repositories
community even has its own long-running conference series.
However, a missing technique relied upon in social research
across many fields is large-scale cross-sectional surveys of
people. These occur in parts of industry today, but they are
quite rarely used in computer science as a research instru-
ment. With the popularity of programming and the rise of
the Internet, it is now relatively easy to do large-scale cross-
sectional surveys of developers. Should we, and if so, how?

On and off again for two years, we have been launching
and analyzing mass surveys of developers and repositories to
understand the process of programming language adoption.
This paper reflects on the methods we used, and particularly
their strengths, weaknesses, and some of the pitfalls we
encountered. Our audience is programming language and
software engineering researchers who might wish to pursue
similar questions or methods.

In particular, we examine three topics:

• Analyzing language adoption through big yet sparse
data sets. We describe new results (including with re-
spect to our concurrent work) relating to: programmers
ranking languages according to various statements, pro-
grammer age, year of birth, and gender, and ZZZ. Many
of our analyses are due to inherently sparse high dimen-
sional data, so we describe algorithms and visualization
techiques for understanding it.

• Survey setup. We discuss how the wording of questions
can bias the results. [[For example, ... ]]

• Sources of sample bias in developers. We show how de-
veloper demographics shape results of developer surveys.
We also find demographic biases in software repository
surveys. Put together, these highlight real methodological
dangers in the increased use of mining programs for pro-
gramming language and software engineering research.

Overall, we show surveys are an effective methodology – if
used correctly. We end on a promising note by describing
emerging opportunities for performing effective ones. For



Survey Conducted by Description Scope

Hammer David MacIver Survey of developers about 50 languages and com-
paring 100 properties about them. No demographic
information maintained.

13000 people
2 years

MOOC David Patterson
(course instructor),
with advice from us

Entry survey for two offerings of a Massive Open
Online Course in software engineering for software
as a service.

10000 and 1100 people
Half a year apart

Slashdot us Survey posted by us to understand audience from
Hammer visualization

1600 people
2 weeks

SourceForge SourceForge Project descriptions from a massive open source
software repository

10 years
200000 projects
260000 people

Table 1. Data sources mentioned in this paper

example, while traditional student surveys do not sufficiently
sample developers, massive open online course surveys will.

The structure of this paper parallels the trajectory of our
research. We started off analyzing an existing data set, with
minimal demographic information; this is presented in the
next section of this paper. That experience left us with a
number of hypotheses. We arranged to have a number of
questions about programming experience and beliefs added
to the course survey for the Berkeley Massive Open Online
Course in software engineering for software as a service.
Our analysis of the Hammer data attracted significant social
media attention, which we used to collect responses for our
own mass survey. We refer to this survey as the Slashdot
survey, labeling the source of many of the responses.

Beyond the general problems of survey research, we
found a number of challenges specific to surveying program-
mers. Section 3 discusses some of the challenges in wording
questions. Following that, Section 4 looks at demographic
issues.

Our conclusion is three-fold. First, surveys are a power-
ful but rarely utilized research instrument for basic questions
in programming languages and software engineering. Sec-
ond, there are many emerging and underutilized opportuni-
ties for performing surveys. Finally, survey methodologies
from other fields apply to our own. We especially stress an-
alyzing and controlling for demographics before reporting
conclusions about surveys. This warning applies irrespec-
tive of whether they are directly of developers or indirectly
through software repositories.

2. Hammer: Sparse High-Dimensional Data
We describe our analysis of a survey of a sparse high dimen-
sional data set. Our approach was to couple machine learning
algorithms with interactive visualizations. Doing so exposed
xyz, including exposing results abc that we were not explic-
itly looking for. This combination, though often with more
lightweight variants, was common throughout our surveys.

Figure 1. The selection phase of Hammer Data gathering

The survey is of particular interest because of its scope: it
provides a significant amount of data about how developers
compare languages according properties such as correctness,
speed, simplicity, job prospects, and enjoyment. Our interac-
tive visualizations are available online1. We believe they can
help other researchers frame hypotheses worth investigating
carefully.

2.1 THE HAMMER PRINCIPLE Survey
“The Hammer Principle” is a website by David MacIver that
invites readers to compare programming languages based
on a high-dimensional series of metrics [2]. He (graciously)
provided us with anonymized survey results. Over two years,
respondents came in bursts from popular online sites such as
Slashdot, Hacker News, Reddit, and Lambda the Ultimate.

They went through the following process:

1. Pick languages Respondents picked a set of languages
that they are comfortable out of a pool of 51 (Figure 2).
The average set had about 7 languages.

1 www.eecs.berkeley.edu/~lmeyerov/projects/socioplt/viz/

index.html



Figure 2. The ranking phase of Hammer Data gathering

2. Rank languages by statement Respondents were shown
a series of statements. For each statement, a respondent
ordered the previously selected languages based on how
well they matched the statement (Figure 2). The average
respondent answered 10-11 questions.

Over 13,000 people filled out the survey. Challenging
analysis, individual responses are sparse and often contra-
dictory, so we use machine learning algorithms to compute
strong relationships with high confidence. Furthermore, the
data set is high-dimensional (110 statements about 50 lan-
guages), so we made several interactive visualizations to ex-
plore statistical analysis results.

2.2 Glicko 2 Ranking Algorithm
The Glicko 2 chess ranking algorithm drives our first vi-
sualization and subsequent analyses. The first interactive
visualization compares languages according to how well
they match different statements about them. This provides
a human-understandable fingerprint for each language and
reveals languages that rank similarly – or fail to – for certain
properties.

Consider a respondent ranking a few languages for some
statement X. The languages might be given order A > B >
C. We treat this as the outcome of 3 different matches be-
tween players A, B, and C in sport X, where A > B, A > C,
B > C. While respondents only looked at a total of 140,000
statements, these sequences expand into 4 million pairwise
comparisons. This is good coverage because the full space
of pairwise comparisons is less then 300,000 points.

For a given statement X, globally ordering the languages
is difficult. There is no logically consistent ordering – one
respondent may rank A > B and another B > A. Worse, the
data is sparse for unpopular languages.

The Glicko 2 ranking algorithm is designed for this sce-
nario [1]. It is commonly used in sports: Glicko general-

izes the original Elo rating system and underlies XBox’s
TrueSkill online player rankings.

Glicko proceeds as a simulation. A weak language beat-
ing a strong language gives the weak one a big boost in
score and the strong one a drop, while there is little change
in ranks from a strong language beating a weak one. Time
and contention is factored in by tracking the deviation across
matches: an occasional upset is disregarded, but if the upsets
become consistent (e.g., a language was upgraded), the rank
will converge on the new value. Likewise, high disagreement
about a statement is reflected by a high deviation.

2.3 Interactive Visualization of Language Rankings
We created an interactive visualization to explore the matrix
of language vs. statement (Figure ??). It is effectively a
heatmap. Each row shows how a language ranks relative to
others according to a particular statement: a big green circle
shows that most people agree that the language matches the
statement better than other languages. In contrast, a small
red circle shows most agree it matches the statement less
than most other languages. A language’s row, in practice,
is a fingerprint for quickly comparing languages. Circles
different from their neighbors are generally of interest, as
are particularly small or big ones.

Clickin on the list of languages sorts them, and toggles
control which languages are statements are shown. Clicking
on a circle will simply sort the languages by how well they
match the statement corresponding to the circle. While sim-
ple, these three interactions enable the pattern of focusing on
a statement or language, finding an unusual case of it, and
then seeing how other languages and staetments compare.

For example, we lookup up Coq’s fingerprint and found
that the strongest statement programmers make (the biggest
circle in the row) is that they do not feel smart enough to
write in it. Curious about how Coq relates to other lan-
guages in this problem area, we clicked on the circle. Fig-
ure ?? shows that the two languages programmers feel least
smart enough to write in are Coq and Haskell and then, with
nearly equal reservations, Prolog and Factor. Visual inspec-
tion quickly revealed programmers believe these languages
are inflexible, have an acceptable syntax, and they infre-
quently use them. Except for Haskell, the languages did not
have particularly desirable features.

The visualization also led tweaking our ranking algo-
rithm. In particular, we found REBOL to rank high in cat-
egories we did not expect. The basic reason is that it had a
high deviation; it was placed highly with little confidence.
This can be due to a combination of conflicting responses
and overly sparse data. Our solution was to discount the
ranking by 3 ∗ σ, similar to XBox player rankings, and visu-
alize such contentious statements using transluscent circles.
Hovering over a circle clarifies both the raw score and devi-
ation.



Figure 3. Interactive visualization of language rankings. Current state shows a filter for 4 particular languages across
5 particular statements sorted by match against the statement ”I often feel like I am not smart enough to write this
language.” The clipped statement is ”This language has unusual features that I often miss when using other languages.”

2.4 Correlations and Clustering
As our research interest was about general language phe-
nomena, not particular languages, we then analyzed the cor-
relations across statements in the computed rankings. We
reused the interactive heatmap for navigating the data.

We found many surprises. Perhaps most prominently,
“This language has a strong static type system” strongly anti-
correlated with “This language encourages writing reusable
code.” This conflicts with basic and long-held beliefs about
the nature of modularity by the functional programming
community [? ]. We only suspect usability, not modularity,
would rank low. Another surprise was that terse languages
anti-correlate with annoying syntax: given long-standing cri-
tiques of “write-once” languages, we expected the reverse.
This case is interesting in that, as language researchers,
we were more interested in semantics. For both the anti-
modularity of typed code and legibility of terse code, the vi-
sualization highlighted properties that dispute conventional
wisdom and that we would have otherwise overlooked.

Finally, we computed the k-means clusterings of state-
ments and languages. We use this both to expose relation-
ships and improve the earlier visualizations.

Consider the first cluster of statements shown in Fig-
ure ??. The numbers indicate distance from the center of
the cluster: its average distance of 3.3 is good. The first and
last statements about helpful conventions and dogma pairing
together are unsurprising because social conventions often
arise to solve problems. The second statement about debug-

ging is fairly specific and goes against the common belief
that patterns and conventions are often viewed as symptoms
of linguistic defects, such as argued by Peter Norvig. 2 How-
ever, it seems that fixing these presumed defects may not be
important. Language research for patterns may be a case of
the streetlight effect, focusing on what is known and ignor-
ing what is not.

A subtlety of the clustering is that, for the language rank-
ings used to cluster statements, the languages did not have to
rank highly for the statements to go in the cluster. They could
be similar at any value, as long as it is consistent. The visual-
ization therefore shows which languages support the cluster,
and their rank for the center-most statement. Not shown, for
the above clustering, languages within 5% of the center have
average rank 43 with standard deviation 10. The rank is not
high relative to other statements – languages are generally
not considered overly dogmatic – but on the scale of dogma
that languages exercise (according to the ranking visualiza-
tion), it is.

We also used the clusterings to improve the original rank-
ing visualization. Showing the matrix of all 50 languages
and 111 statements was overwhelming and slow. Instead, by
default, we only show the center-most items the statement
and language clusters. For example, of the statements in Fig-
ure ??, we would only show the first about conventions and
fourth about well-organized libraries. If a user wants to ex-

2 http://norvig.com/design-patterns/



Figure 4. Interactive visualization of statement k-means clustering.

plore a particular family of languages or statements, they can
be expanded.

3. Framing the Right Questions
This section talks about biases introduced by the questions

Developers don’t necessarily know as much as they think
they do. MOOC data shows that they overestimate how
much they use things.

3.1 Names for language features
Software development is a technical field, and therefore has
a technical vocabulary. However, researchers and practition-
ers do not always share the same terminology.

One question on the MOOC survey asked developers
how often they created their own generic classes in Java. (A
generic class is one that has a type parameter, such as class
Foo<T extends Collection>.) In our sample, X% said
they did this often or sometimes. This result is hard to be-
lieve, since a survey of existing code by XYZ found that
only YYY% of developers are actually responsible for doing
so. (Anedcotal evidence and our personal experience agrees
with the study by Bird.)

There are two possible interpretations of this dichotomy.
It may be that professional developers work very differ-
ently to the open source developers studied by XXX. We be-
lieve, however, that developers misunderstood the question.
We had separately asked developers about creating generic
classes and about using generic classes, such as the Java
standard library ArrayList<T>. We think this distinction
is not as clear to developers as it is to us.

For another example, consider the concept of determin-
ism, that a piece of code should produce the same behavior
each time it is invoked. We asked developers how important
this was. We found that XYZ% of developers responded

A lesson to take away from both

3.2 Knowing a language
A basic question about programming language adoption is
how many languages developers know. We asked this ques-
tion several times, to several different audiences. The Slash-
dot survey (Figure 3) asked developers to list the number of
languages they knew well, and separately, to estimate the to-
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Figure 5. Age at time of first “Hello World” over time.
Ages decrease until people born in 1972, after which ages
climb until leveling in 1982.

tal number of languages they know. As can be seen, there
is virtually no age trend; developers of all ages list an aver-
age of six languages they know well, and claim to have ever
learned about ten.

A similar question was on the the MOOC survey. That
survey asked developers to list the languages they knew well,
and to separately list the languages they knew slightly. The
results are shown in Figure 5. As can be seen, the result
is broadly similar to the above. DISCUSS DIFFERENCES
HERE

This lack of change might suggest that developers learn
their languages early, and never learn more. This does not
seem to be the case, however. Figure 4 shows the mean age
for developers who claim to know a variety of languages,
along with the 25th and 75th percentiles.

Developers who claim to know a variety of different lan-
guages have virtually the same age profile. The only excep-
tion is Ada, which skews old. Languages like Python and
Ruby are much more popular now than they were a decade
ago, while C is less popular. Even so, the age statistics for
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Figure 6. Developers of different ages seem to know a sim-
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Figure 7. Developer age does not vary significantly across
most popular languages. (Slashdot)

the developers are similar. This is evidence that developers
are routinely willing to learn new languages.

This leaves us with an inconsistency: if developers are
routinely learning languages, why does the number of lan-
guages they know not rise over their careers? Or at least,
why does their estimate for “languages ever learned” not
rise over time? We suspect that developers are forgetting lan-
guages, or at least, forgetting to mention them. This suggests
that asking developers to estimate the number of languages
is not a reliable technique.

A broader problem is that we are unconvinced that differ-
ent developers interpret “knowing” a language the same way.
There must be some minimum level of mastery or comfort
before a developer will claim to “know assembly.” Is this
level the same as that required to claim to “know Python”?
We suspect not, but have no good way to assess this.

4. Asking the Right People
This section talks about biases introduced by demographics

Not all developers are alike. The same word might de-
scribe hobbyist users of Visual Basic, semi-skilled PHP de-
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Figure 8. Developers of different ages seem to know a sim-
ilar number of languages. Lightly shaded rectangles show
25th and 75th percentiles, darker solid bars show standard
error of mean. (MOOC)

velopers, domain experts in scientific computing, and expert
distributed systems programmers at a large Internet services
company. Asking about “the average developer” or “the true
population statistic” requires picking out some subset of the
people who have ever programmed and defining them as the
population of interest.

On our slashdot survey, we asked developers how quickly
they learned the language they used for their last project.
We found that developers learned faster for hobby projects
than for work projects. For work, only half the users learned
within three months whereas it was over 60% for hobby
projects.

One explanation might be that developers work harder on
their own projects. Another explanation is to observe that
not all developers will program for fun. Developers who
program as hobbyists are likely to be biased towards the
developers who enjoy programming more, and who may
consequently be better at it.

This shows that professionals and hobbyists are not inter-
changeable. The hobbyists may be drawn from those devel-
opers who are the most fluent and capable. A consequence
of this is that open-source development, with a heavy hobby-
ist contingent, may not be a reliable proxy for closed-source
development, which is usually conducted by professionals.
This is a threat to the generality of research that tries to ex-
trapolate from open source to all kinds of programming.

4.1 Sample Bias in Open Source Repositories
We found that the population dynamics change over time for
the SourceForge dataset. Figure ?? illustrates several trends
by showing, for each language, which months it was most
used in. The rise (and fall) of each language varies. For
example, D spiked in late 2006, and AspectJ plummeted
in early 2009. We also found that the best single predictor
for the language of a project is the language used on the
previous one, which is true 30% of the time. The changes in
popularity, and the tendendency to reuse a language, mean
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that the year in which a project is developed in a language
reveals artifacts about the developer. Sampling from popular
years vs. unpopular ones may be subject to experienced and
unexperienced language years. The year a project is written
in a particular language matters in understanding the type
of developer.

Signficantly, overall use of SourceForge waxed and then
waned. Mid 2006 began a long-running boom that began
to collapse in 2009. Not shown, major reason is the rise
of alternative repositories. GitHub launched in April of
2008, reached 40,000 repositories by early 2009 (25% of the
shown SourceForge projects), and 1 million total reposito-
ries by July of 2010. In April of 2011, it hit 2 million reposi-

tories.3 Bitbucket also launched in 2008, and Google Project
Hosting has been available at least by 2007. These reposi-
tories vary by language and license. The repository selected
for a project matters, and by year. For example, projects
at inflection points are made by early adopters. Likewise,
a project not using a language specific repository may be
due to an estranged language user, and therefore one who
deviates from linguistic norms.

We see that the language, repository, year, and developer
history are all considerations when analyzing an open source
project.

3 https://github.com/blog/455-100-000-users, https://github.com/blog/936-
one-million, https://github.com/blog/841-those-are-some-big-numbers



4.2 Sample Bias in Work Environments

5. Conclusions: Surveys are a Delicate
Opportunity

Analysis is important Important results XYZ popped out.
(short paragraph, not contentious).

phrasing exists in forms XYZ, can be surmounted by ZZZ

bias exists in forms XYZ, can be surmounted by ZZZ

Emerging data collection opportunities Businesses routin-
tely perform them. MOOCS (as opposed to normal schools).
Language developers are pretty interested in this (e.g., Scala
does analytics, the clojure annual survey). As a subtle point,
practicing language developers survey code, such as to un-
derstand legacy impact. As data-driven methodologies be-
come more ingrained and acceptable, we expect more of
this.
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