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Abstract
Some programming languages become widely popular while
others fail to grow beyond their niche or disappear alto-
gether. This paper uses survey methodology to identify
the factors that lead to language adoption. We analyze
large datasets, including over 200,000 SourceForge projects,
590,000 projects tracked by Ohloh, and multiple surveys of
1,000-13,000 programmers.

We report several prominent findings. First, language
adoption follows a power law; a small number of languages
account for most language use, but the programming mar-
ket supports many languages with niche user bases. Second,
intrinsic features have only secondary importance in adop-
tion. Open source libraries, existing code, and experience
strongly influence developers when selecting a language for
a project. Language features such as performance, reliability,
and simple semantics do not. Third, developers will steadily
learn and forget languages. The overall number of languages
developers are familiar with is independent of age. Finally,
when considering intrinsic aspects of languages, develop-
ers prioritize expressivity over correctness. They perceive
static types as primarily helping with the latter, hence partly
explaining the popularity of dynamic languages.

Categories and Subject Descriptors D.3.0 [Programming
Languages]: general

General Terms Languages, Human Factors

Keywords programming language adoption; survey re-
search
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1. Introduction
Some programming languages succeed and others fail. Un-
derstanding this process is a foundational step towards influ-
encing it, assisting language designers and advocates in fos-
tering adoption. Likewise, understanding adoption will aid
developers in determining when and whether to bet on a new,
experimental language. To date, the language adoption pro-
cess has not been quantitatively studied at a large scale. This
paper addresses that gap. We use a combination of survey
research and software repository mining to investigate the
factors that influence developer language choices.

Since little is quantified about the programming language
adoption process, we focus on broad research questions:

What statistical properties describe language popu-
larity? We begin (Section 3) with an empirical analysis
of language use across many open source projects. Such
a macro-scale analysis reveals what trajectories languages
tend to follow. Our analysis includes the overall distribu-
tion of language use, and how it varies based on the kind
of project and developer experience.

We found that popularity follows a power law, which
means that most usage is concentrated in a small number
of languages, but many unpopular languages will still find
a user base. The popular languages are used across a vari-
ety of application domains while less popular ones tend to
be used for niche domains. Even in niche domains, popular
languages are still more typically used.

Which factors most influence developer decision-
making for language selection? Section 4 examines the
subjective motivations of developers when picking lan-
guages for specific projects. Knowing what matters to de-
velopers helps language designers and advocates address
their perceived needs.

Through multiple surveys, we saw that developers value
open source libraries as the dominant factor in choosing pro-
gramming languages. Social factors not tied to intrinsic lan-
guage features, such as existing personal or team experience,
also rate highly.

How do developers acquire languages? Knowledge
about the learning process is important because developers
are much more likely to use a language they already know.



In Section 5, we examine how age and education shape lan-
guage learning.

We found that developers rapidly and frequently learn
languages. Factors such as age play a smaller role than sug-
gested by media. In contrast, which languages developers
learn is influenced by their education, and in particular, cur-
riculum design.

What language features do developers value? Whereas
Section 4 looks at how developers pick languages for spe-
cific projects, Section 6 examines their feelings about in-
trinsic features of languages, such as type systems. The re-
sults can help designers craft better languages and advocate
them, and even influence curriculum design due by exposing
knowledge gaps.

We found that developers generally value expressiveness
and speed of development over language-enforced correct-
ness. They see more value in unit tests than types, both for
debugging and overall. How features are presented strongly
influences developer feelings about them: developers rank
class interfaces more highly than static types.

Before addressing the above research questions, we de-
scribe our data sets and methodology. We finish the paper by
discussing threats to the validity of our results (Section 7),
related work (Section 8), and our conclusions (Section 9).

2. Methodology and Data
This paper is based on several different surveys and data
sources: we used software repositories, surveys conducted
by others, and a survey conducted by us. These were used in
a sequence; the results of one analysis informed the design of
the next. We began with pre-existing data from the Source-
Forge repository and The Hammer Principle, a long-running
online survey about programming languages. These led us
to preliminary hypotheses, which we investigated with sur-
veys. Finally, we cross-validated our results with the Ohloh
project database.

2.1 Data
We now describe our data sets in more detail. In chronolog-
ical order, we used:

1. Open Source Repository Metadata: SourceForge.
We wrote a crawler to download descriptions of 213,471
projects from SourceForge [2], an online repository for
open source software. Of most relevance to our analysis,
the downloaded metadata for each projects documents the
project’s languages used, primary project category (e.g., ac-
counting), date of creation, and the project’s owners. The
languages are drawn from a list of 100 curated by Source-
Forge; the categories, from a set of 223.

The years examined are 2000-2010. This data set is a rea-
sonable proxy for open source behavior because, for most of
the analyzed period, SourceForge was the dominant software
repository. For example, its modern competitor GitHub was
not even created until mid 2008. Open source community

behavior is important in its own right, and as our results will
show, commercial developers prioritize open source when
making their own adoption decisions.

2. Online Poll: Hammer. “The Hammer Principle” is a
website that invites readers to compare various items, such
as programming languages, based on a multidimensional se-
ries of metrics [13]. Respondents pick a set of languages
that they are comfortable with out of a pool of 51 lan-
guages. They picked 7 languages on average. Respondents
are then shown a randomly sorted series of statements, such
as “When I write code in this language I can be very sure
it is correct.” For each statement, the respondent orders the
languages that they selected based on how well they match
the statement. The survey includes 111 statements, and re-
spondents sorted languages for an average of 10 statements
each before tiring. The survey period was 2010-2012.

The raw and anonymized data was provided by the site’s
maintainer, David MacIver. For each statement, we used a
variant of the Glicko-2 ranking algorithm [8] to convert the
sparse data of inconsistent pair-wise comparisons into a total
ranking of languages. A prior publication [14] describes this
analysis in further detail.

The intuition is that we treat each statement as a tour-
nament between languages. Glicko converts the sparse pair-
wise comparison into a total order. The Glicko family of al-
gorithms is used in chess tournaments and online game rank-
ings for producing a complete ranking of players without ev-
ery pairwise comparison: beating a highly ranked language
contributes more than beating a low-ranked language. Each
player (i.e., language) has an absolute rank and a statistical
confidence for it.

3. Course Surveys: MOOC. We gained access to a
survey of 1,185 students in a massive online open course
(MOOC) on software-as-a-service (SaaS). The survey was
administered at the beginning of the course, so student be-
liefs were not be altered by the instructors, though the re-
sults do reflect sample bias towards programmers with an
interest in SaaS development. Most respondents were not
traditional undergraduate students. Their median age was 30
and a majority (62%) described themselves as professional
programmers.

The survey was primarily conducted for pedagogical pur-
poses, not research. However, we advised the instructors on
question wording, and were given access to the raw col-
lected data. Respondents were asked if they consented to
research use of their responses; 1,142 said yes (96.5% of
all responses). We only analyze responses from adults who
agreed to research use.

Respondents were randomly divided into four subsam-
ples. Some questions were asked to every respondent (MOOC
all) while others were only asked to one subsample. We di-
vided the questions to avoid fatigue in respondents from
overly long surveys while still achieving enough responses
for statistically significant analysis of many questions. Only



Name Responses Age Degree Pro.
Quartiles

MOOC b 166 25 - 30 - 39 51% 60%
MOOC d 415 25 - 30 - 38 51% 58%
MOOC a–d 1,142 25 - 30 - 38 53% 62%
Slashdot 1,679 30 - 37 - 46 55% 92%
SourceForce 266,452 people and 217,368 projects.
Ohloh 590,000 projects.
Hammer 13,271

Table 1: Overview of data sets and populations. Degree =
percentage with at least a bachelor’s in CS or related field.
Pro = Professional programmers.

Name Date Top 6 Languages
MOOC 2012 Java, SQL, C, C++,

JavaScript, PHP
Slashdot 2012 C, Java, C++, Python,

SQL, JavaScript
SourceForge 2000-2010 Java, C++, PHP, C, Python,

C#
Ohloh 2000-2013 XML, HTML, CSS,

JavaScript, Java, Shell
Hammer 2010-2012 Shell, C, Java, JavaScript,

Python, Perl
TIOBE Index Feb. 2013 Java, C, Obj.-C, C++, C#,

PHP

Table 2: Most popular languages in surveyed populations.
There is substantial, but not total, overlap.

two of the subsamples (MOOC b and MOOC d) are relevant
to the questions addressed in this paper.

4. Online Survey: Slashdot. We created interactive visu-
alizations of the Hammer data set and put them on a public
website. These attracted a substantial amount of web traf-
fic. Viewers were invited to answer a short survey. Most of
the readers arrived via links from popular websites such as
Slashdot and Wired; we refer to this as the “Slashdot” sur-
vey. Over 97% of the responses were collected during a two-
week span in the summer of 2012.

5. Ohloh We cross-validated some results using Ohloh [1].
Ohloh is a website, bought by SourceForge, that tracks
over 590,000 open source projects hosted on SourceForge,
GitHub, and elsewhere. We used it for queries such as how
many repositories contain a Java file.

Raw anonymized data from the MOOC and Slashdot sur-
veys are available online, as are the visualization and data
exploration tools for the Hammer data (and underlying cor-

relations).1 The accessed SourceForge webpages and Ohloh
API are publicly accessible at time of writing.

Not every data source is applicable to every question we
ask. Table 3 summarizes how the data was used in various
sections.

2.2 Respondent Demographics
We tracked demographic information on the MOOC and
Slashdot surveys. For both surveys, the respondent popu-
lations are primarily professional developers. A majority in
each have computer science degrees. The MOOC population
skews younger than Slashdot and towards fewer profession-
als (Table 1), though the majority are still adult profession-
als with degrees. Comparing the results from the MOOC and
Slashdot surveys helps us tease out population-specific and
wording-specific effects.

Programmers are diverse. Professional developers are es-
timated to be a minority of all individuals who write code
at work or as hobbyists [23]. Our research therefore does
not exhaust the universe of programmers. However, study-
ing professional developers is of particular interest for un-
derstanding adoption, both in terms of societal impact and
understanding the relevance of best-effort practices such as
technical education. We therefore emphasize the results for
professionals.

We qualitatively validate our sample against that of pre-
vious work. Table 2 compares the six most popular lan-
guages of our surveys against the TIOBE index, which mea-
sures the volume of web search results for programming lan-
guages [3]. The tables suggest that our survey samples are
broadly in alignment with one another and with the TIOBE
survey. Differences appear attributable to details in ques-
tion wording. For example, programmers might use CSS and
XML regularly, but not think of it as a programming lan-
guage unless prompted to include it. They might use SQL,
but not consider themselves experts. Finally, they might use
a shell scripting language, but not consider it important. We
performed similar grounding comparisons against other re-
sults throughout our work.

2.3 Methodology
To maximize the quality of our surveys, we applied standard
methodology for iterative gathering of large-scale and cross-
sectional data.

Throughout the survey design process, we drew upon ex-
ternal sources. At the start, we examined adoption studies in
various social sciences, such as the diffusion of innovation
model by Rogers [22]. We also performed a literature sur-
vey on beliefs of prominent language designers [15]. Finally,
we engaged in a series of open-ended discussions with pro-
grammers and language designers. The interviewees were

1 Currently hosted at http://www.eecs.berkeley.edu/~lmeyerov/

projects/socioplt/data/all.tar.gz and http://www.eecs.

berkeley.edu/~lmeyerov/projects/socioplt/viz/index.html,
respectively



Section Question SourceForge Ohloh Hammer MOOC Slashdot
§3 What is the macro-behavior of lan-

guages and communities?
X + X+ §4.1

§4 What factors influence language
choice for projects

+ §3.2 and 3.3 + §6.2 X

§5 How do programmers learn and lose
languages

X X

§6 What do programmers believe is im-
portant in a language?

X X + §4

Table 3: Summary of where each data source is used. X= data source used in that section, + indicates that the result is
cross-validated against a related result elsewhere in the paper.

primarily visitors to UC Berkeley, attendees at programming
language and software engineering workshops and confer-
ences, Bay Area startup employees, and were academic, in-
dustrial, and government programmers and language design-
ers. These discussions covered several pre scripted questions
and were otherwise driven by the participant. The interviews
helped frame hypotheses as well as helped inform us on how
to phrase subsequent survey questions neutrally and broadly.
Overall, we received advice and input from about 30 people.

To improve the survey instruments themselves, we ap-
plied several techniques.

• Piloting questions. In developing survey questions, we
first prepared a preliminary questionnaire and tested it
on several undergraduate and graduate students. We then
held a discussion with about 10 graduate students in
programming languages about hypotheses. We then re-
peatedly revised the questions by asking undergraduates,
graduate students, and visiting researchers and profes-
sionals about how they understood each question.

• Free response. Each survey asked respondents if any
questions were confusing and, after some individual
questions, whether they had more to add. We do not re-
port on questions that respondents flagged as confusing.
To preserve anonymity, we do not release the answers to
free response questions.

• Demographic questions. We applied two techniques to
detect and compensate for sample bias. First, we included
a variety of demographic questions, such as for age and
education. Second, we compare results from several dif-
ferent surveys and different populations.

Our cross-sectional survey methods have limitations. For
example, while we asked several questions about respon-
dent’s early experiences with programming languages, a lon-
gitudinal study might assist future work that explores spe-
cific hypotheses. Likewise, we focus on correlations. To sup-
port future examination of causation, we solicited informa-
tion on potentially confounding factors such as developer de-
mographics. Further discussion of our methodology and the

challenges of survey research on programmers appeared at
PLATEAU 2012 [14].

3. Popularity and Niches
We first examine the macro-level question of how adoption
of popular languages differs from unpopular ones. We divide
the analysis into three sub-questions: What is the overall
distribution of popularity? What is the relationship between
languages and application domains? How do developers
move between languages?

3.1 Usage Falls Off Quickly, then Plateaus
The distribution of usage across different languages indi-
cates the risk/reward trade-off for creating a language. If the
median language has significant usage, that makes creating
a language a more promising endeavor than if the median
language accounts for a negligible fraction of usage. (Even
in the latter case, there may still be utility in building a lan-
guage, but the creator has fewer grounds to expect usage.)

Figure 1a shows that a small number of languages ac-
count for most usage on SourceForge and Ohloh reposito-
ries and in the Slashdot survey results. On SourceForge, the
top six languages account for 75% of the projects; the top
20 languages for 95%. General-purpose languages comprise
most of the top 20 languages in all three data sets.

Some domain-specific languages also rank highly. Con-
sidering only a project’s primary language, SQL is the only
domain-specific language in the top 20 languages. But if we
include all languages for a project, SQL, HTML, and CSS
are in the top 20. We cross-validated with Ohloh’s analysis
of overall language use in actual repositories. Ohloh reports
that XML, HTML, and CSS are the top three languages in
terms of any use. SQL and Make are also in the top 20. That
a small set of general-purpose languages dominate language
use is not surprising. However, none of the language design-
ers we interviewed suggested that a language such as CSS,
a constraint-based language for web page layout, would be
more popular than all of the general-purpose languages such
as C and Java. The prominence of domain-specific languages
among other popular languages is surprising.
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Figure 1: Language popularity. Slashdot survey data follows a heavy-tailed power law while curated SourceForge and Ohloh
data better follow an exponential curve.

We turn now from the most popular to the least-popular
languages, the tail of the popularity distribution. Our ini-
tial analysis of SourceForge shows an exponential decline
in language popularity, as does cross-validation with Ohloh
(Figure 1a). In contrast, popularity in the distribution’s tail
plateaus in the Slashdot survey of developers. The average
difference in rank for languages in common between the
Slashdot and SourceForge is only 6.9, suggesting that the
two rankings are reporting on similar underlying usage. The
disparity in tail behavior stems from the fact that the Source-
Forge and Ohloh language counts are based on a curated
list of languages. In contrast, the Slashdot results include all
responses and thus tail behavior is not filtered out.2 Even
though the Slashdot survey measures orders of magnitudes
fewer projects, it yields a similar number of languages to
SourceForge and Ohloh.

2 We manually inspected the Slashdot results and merged synonyms.

The different data sets do not include the same languages,
however: they diverge in tail languages. Over half of the
languages reported in Slashdot are not tracked by Ohloh.
For example, Slashdot respondents report using SAS. Al-
though manual verification shows SAS being used in cov-
ered projects, Ohloh does not count it. We conclude that
programming language popularity has a heavy tail but that
experimental artifacts can conceal this in many data sources.

The heavy tail covers many unpopular languages. For ex-
ample, the least popular languages (those with only a single
project) in Slashdot cover 6% of the projects (Figure 1b).
Three such languages cover 0.2% of the projects. Lacking
the heavy tail, SourceForge and Ohloh show an equivalent
percentage of less than 0.002% for three of the least-popular
languages. The unpopular languages can be quite domain-
specific in practice. For example, one respondent reported
developing in the Linden Scripting Language, used for the
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Figure 2: Dispersion of language popularity across
project categories. The less popular the language, the
more variable its popularity is across application domains.
(SourceForge data set).

Second Life virtual world system. The heavy tail in our data
shows that the market for languages supports creating many
unpopular languages, not just extending the few relatively
popular ones such as Java and Haskell.

3.2 Unpopular Languages are Niche Languages
Our next question is how the popularity of a language relates
to its domain-specificity. To evaluate this, we use the project
category labels provided by the SourceForge metadata. For
each language, we compared its overall popularity (as a frac-
tion of all projects) to its popularity in each category (e.g.,
accounting). We formalize this comparison as the coefficient
of variation (standard deviation divided by mean). Figure 2
plots the coefficient of variation of language usage against
the percentage of projects using them (i.e., popularity). Ta-
ble 4 shows several languages in detail.

We find that popular languages receive broad-based sup-
port while unpopular languages tend to be used in a few par-
ticular domains. For example, Java is used by 20% of the
projects. For 70% of the project categories, Java is used by
10–30% of the projects within that category; for those cate-
gories, Java’s popularity is within 50% of its overall popular-
ity. In contrast, a relatively unpopular language like Prolog
is only used in a handful of categories. For 70% of cate-
gories, Prolog’s popularity within a category will differ from
its overall popularity by +/- 800% rather than Java’s +/-50%.

A few outliers stand out in our analysis. Assembly (µ =
0.011, σ = 0.03) and Fortran (µ = 0.002, σ = 0.03) vary
in popularity across categories 3-6X more than our model
predicts based on their overall popularity. In effect, these
are domain-specific languages for low-level or numeric pro-
gramming, respectively. That makes them unusual cases of
domain-specific languages that are popular overall. A pos-
sible explanation is that both used to be viewed as general-
purpose languages; they have held onto niches, rather than
colonized them for the first time.

Java
C++
PHP
C
Python
C#
JavaScript
Perl
Unix Shell
Delphi/Kylix
Visual Basic
Visual Basic .NET
Assembly
JSP
Ruby
PL/SQL
Objective C
ASP.NET
Tcl
ActionScript

Project Categories (223)

Percent of projects in a category
0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 3: Fraction of projects in each language for differ-
ent project categories. Y axis is the top 20 (95%) languages
and X axis is project categories with at least 100 projects
written in any language. Dark red cells indicate a high prob-
ability of using a particular language within a given project
category. (SourceForge).

Top 6 Languages
Java C++ PHP C PYTHON C#

µ 0.205 0.167 0.119 0.140 0.063 0.062
σ 0.094 0.101 0.117 0.100 0.028 0.029
σx̄ 0.006 0.007 0.008 0.007 0.002 0.002

Top 25-30 Languages
ASP BASIC Obj Pascal Matlab Fortran

µ 0.003 0.003 0.002 0.003 0.002
σ 0.004 0.004 0.003 0.008 0.009
σx̄ 0.001 0.001 0.000 0.000 0.000

Table 4: Mean, variance, and standard error of language
popularity in different project categories. Only project
categories with at least 100 projects are considered. We show
the top six (75% total usage) popular languages and also
languages 25-30 (1.2% total usage). Order of categories is
arbitrary. (SourceForge).

VBScript is an outlier of the opposite sort: our model pre-
dicts more variability across categories than actually occurs.
We hypothesize that, since VBScript is a scripting language
packaged with and made for Windows, it attracted a varied
base of developers that were performing a wide range of
tasks. Despite occasional outliers such as Fortran and VB-
Script, Figure 2 shows a clear curve that relates overall pop-
ularity to the variation in popularity across niches.

Even though unpopular languages have their usage con-
centrated in a few niches, they are rarely the most popu-
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Figure 4: Probability of picking a language given the lan-
guage of the previous project. Y axis shows the language
of the previous project and X axis shows the language of the
next: each point is the probability p(L′ = x | L = y). Lan-
guages with less than 100 projects are elided. (SourceForge)

lar languages in those niches: the consistently popular lan-
guages tend to win out. Figure 3 illustrates this with a heat-
map showing the relative popularity of languages across
niches. The languages are sorted by popularity, with the bot-
tom rows containing the most popular languages.

There are cases where a language that is less popular
overall will beat out more-popular languages in specific
niches. For example, C++ is more popular than C in general
but not for compilers in particular. Figure 3 shows that PHP,
C, and C++ (the top three languages) vary in relative popu-
larity across domains. This effect is largely limited to the top
few languages, however. Beyond that, a niche-specific lan-
guage’s comparative advantage is dominated by the overall
popularity of the top overall languages.

3.3 Developer Migration
Developers work on many projects over the course of their
careers. We do not expect one language selection decision
to be independent of the next, so we examine how devel-
opers move from language to language. More precisely, we
ask how using a language for one project influences a devel-
oper’s selection for the next.

Karus and Gall have analyzed the commit logs from 22
open source projects, and report that developers tend to stick
to “clusters” of languages — for example, they report that

only a small fraction of Java developers also use C/C++
(7%), and C/C++ developers are five times as likely as Java
developers to use Perl [12]. We hypothesized that we would
see a similar clustering pattern in our data.

We again used SourceForge data to answer this question.
For each developer that contributed to multiple projects, we
examined how the choice of language for a project influ-
enced the language choice for the project with the chrono-
logically next creation date.

We present the results in Figure 4. Each row depicts the
probability that a developer’s next SourceForge project will
use the language on the bottom, given that the developer
was previously in a project that used the language labeled
on the right. The bright diagonal line shows that developers
often keep using the same languages. If we select a first
language uniformly at random, developers will keep to that
language 18% of the time. More often – 52% of the time
– they will switch to one of the top six languages overall.
These overall-popular languages correspond to the vertical
bands in Figure 4.

A given prior language only occasionally correlated with
the choice of a specific different language for the next
project. Most notably, developers have high propensities
to switch between Windows scripting and application lan-
guages, such as VBScript and C#. These languages also
correlate with Microsoft web-development languages such
as ASP. Such correlations are also visible in the results of
Karus and Gall [12], who found groupings such as WSDL
and XML being used in conjunction with Java.

Notably, we do not see significant exploration within
linguistic families. There is a relatively low probability of
switching between Scheme and LISP, or between Ruby,
Python, and Perl. We conclude that developer movement
between languages is driven more by external factors such
as the developer’s background or technical ecosystem than
by similarity of the underlying languages. This implies that
language advocates should focus on a domain and try to
convince programmers in that domain, instead of trying to
convince programmers who use languages with semantic
similarities to the new language.

One limitation of our result is that project participation
is an imperfect proxy for language use. Some cases of lan-
guage reuse may be due to developers that only saw a lan-
guage being used on one project and then used it themselves
on the next. Likewise, we only sample SourceForge projects:
the effects we report may be stronger in general because
they may carry through intermediate projects not reported
on SourceForge.

Overall, we found a simple and representative model de-
scribes language selection: language popularity and prior
use predicts over 75% of the language selection decisions
in SourceForge. Despite our model’s simplicity, it is effec-
tive. More complicated refinements to ours would only need
to address 25% of the unexplained projects.



0 10 20 30 40 50 60 70 80
Percent of respondents describing aspect as 

medium or strong importance

Simplicity (I)

Commercial libs. (M)

Particular language feature (I)

Potential team famil. (E)

Safety/correctness (I)

Tools (M)

Development speed (M)

Portability/platform (E)

Performance (M)

Team familiarity (E)

Personal familiarity (E)

Already used in group (E)

Extending existing code (E)

Open source libs. (M)

Overall
1-100 employees
101+ employees
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4. Decision Making
Above, we analyzed the overall “macro”-level process of
language adoption. One of our observations was that unpop-
ular languages usually have their popularity concentrated in
a few niches. We now offer a “micro” view: we focus on
how individual developers make decisions. The central re-
search question being investigated is which factors influence
developer selection of languages? We break this into two
parts: how do developers weigh features of languages when
they are making choices, and how do demographics affect
the languages that developers pick? This will help explain
the observations in the previous section.

4.1 Weighing Language Features
In the Slashdot survey, we asked respondents to rate the
influence of particular factors in picking the language for
their most recent project. Ratings used a four-point scale
from “none” to “strong”. By asking about their most recent
project, we encouraged reflection on a historical event and
deemphasized ideal preferences that might not be acted upon
in practice. Respondents assigned individual priorities to 14
factors (Figure 5). We selected the 14 categories such that
the dominant choice for picking a language would be rep-

resented. Pretesting helped form the list, and free response
comments from final respondents suggest that no significant
categories are missing.

A wide gap separates the most and least influential fac-
tors. The most influential factor, the availability of open
source libraries, was “strong” or “medium” for over 60% of
respondents. For the least influential factor, simplicity, only
25% said the same.

We wanted to see how these results depend on a devel-
oper’s work environment. To do this, we broke out those re-
spondents who picked a work project and who indicated an
organization size. We divided respondents into those work-
ing at companies with fewer than 100 employees and those
with more than 100. (This threshold is closest to splitting
the data set evenly, facilitating comparison.) The results for
these subpopulations are also shown in Figure 5.

Some of the factors, such as the language’s features or
simplicity, depend on the language design, not on its user
base. Others, such as whether a developer already knows the
language or the ease of hiring developers who know it, are
extrinsic and depend on the social context of the language.
Some factors include a mix of extrinsic and intrinsic aspects.
For example, the presence of libraries or good development



tools is a combination of social and technical factors. Figure
5 is labeled with our judgement about whether a factor was
intrinsic, extrinsic, or mixed.

We emphasize four results from the data:

1. Open source libraries. Open source libraries are the
most influential factor for language choice overall and the
most influential factor for commercial projects at small
companies. They are an important factor, but not the most
important factor, at large companies.

2. Social factors outweigh intrinsics. Existing code or ex-
pertise with the language are four of the top five factors
for adoption. In contrast, intrinsic factors, such as a lan-
guage’s simplicity or safety, rank low. Implementation at-
tributes, like performance and tool quality, have both in-
trinsic and extrinsic components. (Some languages lend
themselves more easily than others to a high-performance
implementation.) These mixed attributes vary in impor-
tance.

3. Domain specialization. Libraries, developer experience,
and legacy code are all important in language selection.
These factors are often associated with particular appli-
cation domains. Thus, the developer emphasis on these
attributes helps explain the result in Section 3.2 that less-
popular languages are more niche-specific.

4. Company size matters. Employees at larger compa-
nies place significantly more value on legacy code and
knowledge than do employees at small companies. Cor-
rectness becomes more influential for large companies,
while simplicity, platform constraints, and development
speed matter less. Compared to developers overall, those
at larger organizations weigh commercial libraries more
and open source libraries less (although open source is
still weighted more highly).

These results help inform language designers seeking
adoption where to focus their efforts. Developing high-
value open source libraries is likely to have a large influ-
ence to language adoption, particularly for individuals and
small companies. Simplicity will not attract many program-
mers. Smaller companies are less constrained by legacy code
and experience. We suspect that they are therefore likely
more willing to adopt new languages that are not backward-
compatible. In contrast, a backward-compatible change to a
language might be more valuable to a large company.

4.2 Demographic Influences on Language Selection
We now look at how developer demographics affect the lan-
guages that developers select. Understanding this extrinsic
factor clarifies the generality of our results and its role for
future empirical analysis or targeting of developers.

We observed significant correlations when distinguish-
ing the different demographics that selected a particular lan-
guage. Figure 6 shows that, for languages selected by Slash-
dot respondents, age and company size strongly influence
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Figure 6: Demographic influences on selecting partic-
ular languages. Self-reported for every respondent’s last
project. Bars show standard error. (Slashdot, nany = 1679,
n1-19 employees = 290, n20+ employees = 790, nage≤25 = 154,
nage>25 = 1382).

whether a particular language was selected. For example,
employees at small companies are 1.4-3.0 times more likely
to use Objective-C than the typical respondent. Likewise,
when looking at age, developers under 25 rarely use Perl but
disproportionately select Python.

Compared to the breakdowns of Figure 5, we see that
language selection is especially sensitive to demographic ef-
fects. Notice also that different languages are sensitive to dif-
ferent demographic variables: Perl and Python are age sen-
sitive, but appear insensitive to company size; Objective-C
is sensitive to company size, not to age. Our observations
suggest that it is unsafe to generalize about how any particu-
lar demographic variable will correlate with language usage.
Different languages will have different social dynamics.

5. Language Acquisition
Here, we switch focus from the decision to use a language at
a particular instant to the process of learning languages. We
examine three related questions: How long does it take de-
velopers to learn languages? When in their careers do they
learn? How does education affect learning? The previous
section demonstrated that developers prefer to use languages
they already know. Understanding how quickly developers
learn and what induces them to learn helps explain this adop-
tion factor.

5.1 Learning Speed
For the language used on their most recent project, the Slash-
dot survey asked respondents to estimate how long it took to
learn to use the language well. To “know a language well”
is an intentionally imprecise and subjective standard. We
showed above that when developers pick languages for a
project, they are heavily influenced by the languages they
believe they know: developers will be using their own sub-
jective standard.

Figure 7 shows the results for all languages for which
we had at least 50 responses. The question was framed
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Figure 7: Median reported speed of language acquisition.
Bars are standard error. (Slashdot, n = 1679)

as multiple choice; the y-axis labels of Figure 7 were the
available options.

The median learning times for the most challenging lan-
guage and the most approachable differ by a factor of ten.
Programmers report C++ as the slowest to learn while the
fastest are PHP, Python, and Ruby. Java and C#, which are
semantically similar, are between these extremes and have
similar learning times.

The relative time to learn PHP is noteworthy. PHP is noto-
rious for its ad-hoc design while Python is well-regarded for
its simplicity. Despite their differences, both languages have
comparable reported learning times of just a few months.
We infer that developers determine that they can “use the
language well” even if they have not mastered every nuance.
Developers may only need to learn a subset sufficient for
completing routine work.

More fundamentally, the relative ease of learning PHP
suggests that, while complexity is a barrier to adoption [22],
what makes a language complicated for developers need not
be what makes it complicated for a designer or researcher
(e.g., convoluted formal semantics). For the same reason,
what makes a language simple in a formal sense need not
make it simple for developers and otherwise adoptable.

5.2 On-site Language Learning
We now examine the relationship between developer demo-
graphics and the languages that they learn. Knowing which
demographics are likely to learn helps language proponents
target their outreach at those potential early adopters.

The Slashdot survey asked respondents whether, during
their last project, they learned the primary language for it.
Figure 8 shows the results broken down by age and orga-
nization size. We found that younger developers are more
prone to learning new languages. Overall, 21% of respon-
dents learned a language for their most recent project. That
rate increases to 29% for 21-to-22-year olds. While a jump
for younger programmers is not surprising due to inexperi-
ence or perhaps eagerness, we had expected to see a much
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Figure 8: Probability of learning the primary language
during a project. Shading denotes demographics and bars
are standard error. (Slashdot, n = 1536)

higher increase in learning rate. The difference quickly ta-
pers off, with developers aged 25-30 behaving similarly to
those aged 31-40 olds (20% vs. 19%). Relative to age, orga-
nization size has minimal influence.

Our analysis shows that developers in our sample steadily
learn languages throughout their career. As a result, they are
not limited by the languages that were popular when they
were young or in school. This means that the time scale of
language adoption is not driven by the career timelines of
developers.

5.3 Languages Over Time
The next sub-question we examine is how a developer’s
age influences the particular languages that the developer
knows. Some professional recruiters claim that there are
large and significant differences in the languages that older
and younger developers use [11]. Our results refute this.

Figure 10 shows the median age for programmers who
claim to know each of the indicated languages, along with
the 25th and 75th percentiles of age. The distributions are all
very close. The highest median age we observed was 38.9
(BASIC and Perl); the lowest was 37.3 (Ruby). This is sur-
prising: we would have expected changes in education over
time to result in substantial variation in median programmer
age. Instead, the 95% confidence interval for every language
includes the overall response mean age (38). The deviations
are not statistically significant. We observed similar age in-
variance patterns in the results of the MOOC survey. There
as well, developers of different ages know a similar number
of languages and a similar mix of languages.

This shows that differences in learning by age, described
above, get washed out over the course of a career. In our sur-
veys, programmers of any age are equally likely to remem-
ber or newly learn older languages like Pascal. Young pro-
grammers catch up to old ones, and older ones keep learning.
Popular languages do not thrive or wither based on the age
breakdown of their adherents. Programmers keep learning,
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Figure 10: Mean, standard error, and 25th and 75th per-
centiles for ages of programmers who claim to know each
language. Languages are sorted by creation date. Distribu-
tions are nearly the same for every language. (Slashdot, n =
1679)

and learn often enough and quickly enough that their age
does not predict which languages they know.

We now look at the overall number of languages a devel-
oper knows. The Slashdot survey asked developers to esti-
mate the number of languages they have learned, and also to
list the languages that they know well. These different ques-
tions capture different levels of knowledge and familiarity
and we include both in our results. Figure 9 plots the mean
number of languages known by developers against their age,
along with the inter-quartile range. Both lines are remark-
ably flat. The mean respondent to our survey claims to have
learned ten languages, and lists six that they “know well.”
Likewise, the upper and lower quartile range does not show
any clear trend over time; the gap between the 25th and 75th
percentile of number of languages does not change over time
in a systematic way.
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Figure 11: Number of languages by age. As with Figure 9;
there is no clear trend with age. (MOOC, n = 1142)

The MOOC survey asked developers to list the languages
they know well and the number they know slightly. The re-
sults are shown in Figure 11. Compared to the Slashdot sur-
vey, the average developer in the MOOC survey knows fewer
languages. However, the results are qualitatively similar in
that there is no age trend. This shows that our result is robust
to both varying the detailed wording of the question and to a
change in the underlying population.

There is a tension between the flat lines on Figures 9
and 11 and the fact that developers are steadily learning.
Since developers of different ages are similarly likely to have
learned a language for their last project, we might expect the
number of languages they know to rise over time. Instead,
older and younger developers report a similar degree of mul-
tilingualism. It follows that developers are losing languages
as well as gaining them. They are forgetting – or at least,
forgetting to mention – some languages.

This result shows that adult developers effectively have a
limited capacity for languages. They typically maintain skill
in a limited number of languages, and will forget as many
languages as they learn. This implies that immediate devel-
oper familiarity is a limited resource for which languages
must compete. Such competition is the basis for ecological
theories of adoption [15].

5.4 Effects of Education
We also looked to see how a respondent’s computer science
education affected their subsequent programming language
knowledge. The Slashdot survey asked respondents to mark
which families of languages they learned while in school
(e.g., assembly, functional languages, dynamic languages).
Table 5 shows our results.

The vast majority of respondents know a compiled non-
functional language, such as C or Java, regardless of major or
curriculum. Likewise, dynamic languages are widely known.
Less-popular language families (assembly, functional, and
mathematical languages) are more sensitive to prior educa-
tion. Promisingly, developers who learned a functional or



Language Examples Overall For CS Non- Correlation of If taught If not Correlation of
Family majors majors CS major vs.

knowing
in school taught learned in

school vs
knowing

Functional Lisp, Scheme,
Haskell, ML

22% 24% 19% 0.053
(0.004 - 0.101)

40% 15% 0.262
(0.217 - 0.307)

Dynamic Perl, Python,
Ruby

79% 78% 79% -0.008
(-0.056 - 0.040)

84% 77% 0.069
(0.021 - 0.117)

Assembly 14% 14% 14% 0.004
(-0.044 - 0.052)

20% 10% 0.138
(0.091 - 0.185)

Imperative/OO C/C++,Java/C# 94% 97% 90% 0.134
(0.087 - 0.181)

95% 87% 0.133
(0.085 - 0.180)

Math R, Matlab, Math-
ematica, SAS

11% 10% 11% -0.020
(-0.068 - 0.028)

31% 7% 0.268
(0.223 - 0.312)

Table 5: Probability of knowing at least one language in the indicated family, overall and grouped by major and specific
educational experience. Also shows correlation coefficients between knowing a language in that family and (a) having a
CS degree, and (b) having learned a language in that family in school. Whether developers learn a language in that family
in school has much more influence than being a CS major. Shown below each correlation is the 95th percentile confidence
interval. (Slashdot, n = 1679)

math-oriented language in school are more than twice as
likely to know one later than those who did not.

Educational intervention has limits, however. For math-
ematical, functional and assembly languages, the large ma-
jority of developers that learned a language in that family no
longer know any similar language. Consequently, the corre-
lation between education and later knowledge is relatively
modest.

Notably, having been a computer science major does not
lead to the same linguistic versatility of students who learned
different language families as part of the course curriculum:
we saw no measurable correlation between being a CS ma-
jor and knowing particular programming paradigms. Our re-
sults suggest that an undergraduate curriculum that does not
introduce students to a variety of languages is unlikely to re-
sult in more versatile programmers later in their careers. This
demonstrates a weakness of curriculums that only focus on
languages such as Java and Python.

One limitation of this finding is that it measures only
correlation, and there could be causation in both directions.
Developers who expect to use distinctive families such as
assembly languages might choose to study them in school.
Demonstrating how much causation flows in each direction
is beyond the scope of this paper.

6. Beliefs about Languages
This section turns from programmer actions to programmer
beliefs. This section looks at what attributes of languages
do developers like or dislike? The question is in contrast
to that of Section 4, which examines how developers pick
languages within the context of a specific project.

Beliefs help shape developer and manager decisions to
learn and advocate languages, and thereby affect the so-
cial dynamics of adoption. Understanding what developers
value, and how developers perceive languages, can help de-
signers both to build better-liked languages and also to ad-
vocate more effectively on behalf of their languages.

6.1 Perceived Value of Features
The MOOC-d survey asked developers to rate the impor-
tance of different types of language features on a scale from
unimportant to crucial. The results are shown in Figure 12.
As can be seen, libraries are the top-rated feature. Such per-
ceived importance of libraries cross-validates our finding
that libraries matter in practice (Section 4).

We included several options on the MOOC-d survey
that represent related concepts. For example, higher-order
functions are a strictly more powerful language primitive
than inheritance. Interfaces are often used for type systems.
Threads can be used to implement task parallelism.

While these features are similar in many ways from a se-
mantics point of view, they had sharply different priorities
with developers. For example, 72% of developers consid-
ered inheritance important or crucial; only 45% felt that way
about higher-order functions. Interfaces likewise were con-
sidered far more important than static types. This is surpris-
ing, given that interfaces are little-used in languages without
static types.

Performance was ranked the second most important fac-
tor. This is significant in two ways. First, particular features
used for low-level programming, such as threads, macros,
static types, and templates all rate much lower. There is a gap
between the importance of performance and the language
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Figure 12: Feature preferences (MOOC-d data set, n =
415).
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Figure 13: Higher-order functions and objects. Most de-
velopers do not see a close connection between the two.
(MOOC-d data set, n = 415).

features used to achieve it today. It is unclear if the gap is
inherent or if language designers should look for ways to fill
it. Second, given the mid-tier importance of performance in
picking a language for an actual project (Figure 5), we also
see a gap between perception and practice.

The survey asked programmers “How similar are higher-
order functions to objects?” to gauge their beliefs about ex-
pressive or practical differences. Responses are shown in
Figure 13. A third of respondents found the question con-
fusing. Another 20% consider them either totally or largely
unrelated. Only 20% reported “very similar” or “mathemat-
ically equivalent.” (We do not report on confusing questions

elsewhere; confusion in this case was expected as it is in-
tended to reflect not understanding the underlying language
semantics.)

We conclude that a large fraction of developers are disin-
clined to reason about the semantic power of language fea-
tures. Features that appear similar to language designers do
not appear so to users. For example, implementation inheri-
tance can be implemented atop higher order functions: meth-
ods can be replaced by open functions and inheritance can be
modeled with constructor delegation.

The optional free text responses were interesting. They
included “didn’t know this was possible. Sounds like it could
be very useful” and “Objects require imperative program-
ming style while functional programming is a lot less ver-
bose and allows for recursive definition.” These responses
reaffirm our observation that many developers do not per-
ceive languages in the same terms as language designers.

Taken together, we see that developers’ impression of fea-
ture importance is not closely tied to the underlying seman-
tic power of the language construct in question. We infer that
developer preferences here are shaped by factors extrinsic to
the language, such as experience and (mis-)education.

6.2 What Programmers Enjoy
We now turn to the closely related question of what pro-
grammers enjoy in a language. This is an open-ended ques-
tion, and our data is preliminary. The Hammer data set, with
its large pool of languages and statements, is the data set
available to us that is best suited to the inquiry. The features
of a language that developers enjoy are conceptually related
to the features developers value, and therefore this question
serves as cross-validation for the results of Figure 12.

The Hammer survey asked developers to rank 51 lan-
guages against 111 different statements, including “I enjoy
using this language.” As described in Section 2, we use the
Glicko-2 algorithm [8] to totally order all the languages for
each such statement [14]. From these rankings, we corre-
lated different statements. Enjoyment is the closest proxy in
the data set for what we mean by “liking a language”, so we
looked for other attributes of languages that correlate with
enjoyment.

The statement with the highest correlation with enjoy-
ing a language is “This language is expressive” (correla-
tion 0.76). Other highly correlated statements include “I
find code written in this language very elegant” (correla-
tion 0.73), and “I rarely have difficulty abstracting patterns
I find in my code” (correlation 0.66). While open source
libraries significantly influence developer actions, “Third-
party libraries are readily available, well-documented, and of
high quality” only weakly correlates (correlation 0.10) with
enjoyment.

Attributes other than “enjoyment” are also relevant to our
inquiry about developer preferences. We examined correla-
tions with the statement “This language has unusual features
that I often miss when using other languages.” The results



Statement Corr.
This language is expressive 0.87
This language excels at symbolic manipulation 0.77
This language encourages writing reusable code. 0.62
The semantics of this language are much different
than other languages I know.

0.56

...
This language has a strong static type system 0.29

...
Libraries in this language tend to be well docu-
mented.

0.00

The resources for learning this language are of
high quality

-0.02

This language is large -0.03
I find it easy to write efficient code in this lan-
guage

-0.06

...
There are many good tools for this language -0.14

...
This lang. has a niche outside of which I would
not use it

-0.42

This is a low level language -0.53

Table 6: Feature desires. Correlations with the statement
“This language has unusual features that I often miss when
using other languages.” (Hammer)

are shown in Table 6. Perceived expressivity strongly corre-
lates with this statement (correlation 0.87); developers value
features that ease development. In contrast, there is no sig-
nificant correlation between having unusual-but-desired fea-
tures and the ease of writing efficient code. Expressivity and
performance are perceived to be unrelated across actual lan-
guages.

6.3 Types vs. Testing
We close by examining the perceived tradeoffs around static
types, particularly as contrasted with unit testing. Static
types are a controversial choice in language design, and we
hope our results help show designers how developers react.

The MOOB-b survey included a set of statements about
types and testing; respondents were asked to mark if they
agreed or disagreed with each. The questions were binary;
yes and no were the only options. We present only the re-
sults from the self-identified professional developers in the
sample. This filters out responses from students, whose ex-
perience may have been derived from small classroom as-
signments, rather than realistic industrial development. This
leaves us with 96 responses — small compared to the other
populations in this paper, but large enough for meaningful
statistical analysis.

Table 7 displays the results. Even despite the large mar-
gins of error, the results are striking. Only 36% “see the

Question Agreement

Unit testing will reveal bugs that static
types miss

31% (+/- 9)

Static types will reveal bugs that unit
testing misses

7% (+/- 5)

Unit testing will reveal more bugs that I
care about than static types

19% (+/- 8)

Static types will reveal many bugs that
I simultaneously care about and are
missed by unit testing

6% (+/- 5)

I see the value of static types 36% (+/- 10)
I see the value of unit testing 62% (+/- 10)
I enjoy using static types 18% (+/- 8)
I enjoy using unit testing 33% (+/- 9)
Most of the value of unit testing is in
finding bugs

33% (+/- 9)

Most of the value of static types is in
finding bugs

8% (+/- 6)

I have used statically typed languages
for large or many projects

39% (+/- 10)

I have used unit testing for large or
many projects

34% (+/- 10)

Using types helps improve readability 45% (+/- 10)
Using types helps improve safety 44% (+/- 10)
Using types helps improve program
modularity

19% (+/- 8)

Using types is generally important, de-
spite the costs

19% (+/- 8)

Using types is rarely important 8% (+/- 6)

Table 7: Beliefs about types and testing. Shows fraction of
responses agreeing with each statement, and 95th percentile
confidence bounds. Results from self-identified professional
developers in MOOC-b sample. (n = 96)

value” of static types. In contrast, 62% – nearly twice as
many – see the value of unit testing. Developers are nearly
twice as likely to “enjoy using” unit tests (33%) as compared
with static types (18%).

Contrary to our initial suspicions, developers describe
neither types nor testing to be primarily about finding bugs.
Only 8% of professional programmers think finding bugs
is the chief benefit of static types, while 33% say the same
about unit tests. Respondents instead find static types to be
important in two areas: readability (45% agreement) and
safety (44% agreement). Bug finding ranked third and mod-
ularity a distant fourth.

We suspect the survey population was biased in favor of
dynamic languages because the course associated with it
focused on software-as-a-service and therefore many web
technologies written in dynamic languages. Even so, this
result shows that there is a population of developers who are
broadly skeptical of the benefits of static types.



We cross-validated this result using the Hammer data. We
looked for statements in the Hammer dataset that correlated
with “This language has a strong static type system.” Static
types correlate strongly with statements about correctness
such as “If my code in this language successfully compiles
there is a good chance my code is correct.” (correlation
0.85). However, languages with static types are much less
closely correlated with languages developers claim to enjoy
(correlation 0.38) and with expressivity (correlation 0.31).
Irrespective of the objective value of static typing, we see
evidence that many developers do not value it highly.

The MOOC population is by no means representative of
all programmers. The underlying course was taught in Ruby
and targeting web application development. However, we
believe the results are valid for dynamic language program-
mers. Even on this restricted population, there are useful
take-aways from these results. Our data suggests that devel-
opers value the readability provided by types more than they
do many other benefits. The data also suggests that develop-
ers do not find that types improve modularity — it contra-
dicts claims often made on behalf of types. These observa-
tions suggest points where future language design research
could better meet perceived needs.

7. Threats to Validity
This section discusses the limitations of our work. We begin
with threats to validity (whether our results are accurate
on the populations we sample) and then consider reliability
(whether our results would apply to other populations.)

7.1 Validity
Respondents to the Slashdot survey had the opportunity to
explore the Hammer data visualizations before answering
the survey. This may have biased them. Because the survey
questions are not closely related to the visualized data, we
expect that the priming effect and consequent bias will not
be large.

Not everybody who starts a survey will complete it. We
lack information about respondents who declined to submit.
They may therefore differ in demographics, background, or
motivation from those whose responses we have.

The methodology used to extract data from the Hammer
Project is novel and we do not have a rigorous analysis of the
statistical margin of error. The underlying Glicko algorithm
is well-documented and widely used, however.

Likewise, extracting data from SourgeForge required
making assumptions and judgement calls. Projects can
change categories, languages, and authors over time.

Our work is largely cross-sectional, looking at one mo-
ment in time. We do answer some questions by examining
longitudinal data from the 10 years of SourceForge data and
careful phrasing of some of our survey questions. Program-
ming languages are reaching the point where we can and
should examine questions that span decades. Furthermore,

we examine correlations. Empirical analysis of causality is
an important growing area [9] and would help elucidate the
adoption process.

7.2 Reliability
Section 3 uses data from the SourceForge repository, which
hosts open-source software. It is possible that proprietary
code bases are statistically different: for instance, obscure
languages might hang on longer inside corporate IT depart-
ments. However, open source development is a major part of
all development activities and its effects will constrain cor-
porate development. As we showed, open source libraries
have a major influence on language selection even within
corporate development.

Our survey samples, while large, are self-selected. In par-
ticular, our Slashdot survey will be biased towards highly
engaged programmers who read technology blogs and are
interested in programming languages. The Hammer Princi-
ple results are likely from a similar population. Our MOOC
data will be biased towards programmers who wish to learn
more and improve their skills. Because the MOOC course
was focused on web-based applications and was taught in
Ruby, we expect that the population will be biased towards
dynamic-language users. This is a particular concern for the
Hammer data, where we lack any sort of demographic infor-
mation about respondents.

All three surveys are biased towards Americans and
English-speakers. While these are important constituencies,
they are not the full universe of programmers. More work is
needed to check whether these results hold in other popula-
tions. We highlighted points of agreement between our data
sources. The overlap in results across our surveys suggest
our work does generalize to some extent.

While many of our results are cross-validated with sev-
eral data sets, some are not: different surveys asked different
questions and different data sources include different meta-
data. The SourceForge data is our only source in Sections
3.2 and 3.3. The observations in Section 4 about the impor-
tance of legacy knowledge and code are based solely on the
Slashdot data set, as are the results about language learning
time in Section 5.1. In Section 6, the MOOC-d survey is our
only source for the observation that developers have diver-
gent opinions about semantically-similar features.

Going forwards, we believe it would be valuable to study
professionals for whom programming is a significant but
not primary job responsibility. For example, engineers and
scientists often do not come from computing fields but are
still important classes of programmers.

8. Related Work
Relatively few studies empirically analyze language adop-
tion. Fewer focus on developer decisions, explore cross-
language phenomena, or use large data sets.



Most similar to our work is that of Chen et al. [5]. They
gathered or estimated data about 17 different languages in
1993, 1998, and 2003 and then performed regression. In con-
trast, we examine developer actions and decision making.
We increase the scale and fidelity and change the intent to
identifying and quantifying influential factors.

Our analysis of SourceForge is a variant of software en-
gineering literature in mining software repositories. For ex-
ample, Parnin et al. [18] found that only 14% of develop-
ers are responsible for incorporating generic classes into ex-
isting Java programs; most developers did not adopt this
new language feature but a few became enthusiastic ad-
vocates. Surveying programmers about Java (generics) and
C++ (templates), we found differences in developer percep-
tion of the same phenomena. This may entail that adoption
should be studied across languages and, for individual de-
velopers, across projects.

Others also mine repositories to understand feature and
the API adoption within an individual language or project.
Okur and Dig [17] show that, given a large library of paral-
lel constructs, 90% of usage is accounted for by 10% of API
methods. Only a limited portion of functionality has been
adopted. Likewise, Vitek et al. characterize the use of lazi-
ness in the R language [16] and dynamic code evaluation in
JavaScript [20]. We examine different questions.

Perhaps the most relevant repository mining research is
that of Karus and Gall who investigate the propensity of
open source developers to use multiple languages [12]. They
found significant overlap, particularly between closely re-
lated languages such as XML Schema and XSL. Their find-
ing does not conflict with our result that transitions between
languages are mostly related to popular and past experience
(Figure 4). Consider the likely case that the programmer will
switch from editing a WSDL file to editing a Java file: these
two languages are often part of the same ecosystem. The
probability of then writing PHP is closer to the overall pop-
ularity of PHP; PHP is outside of the ecosystem.

Many of the questions we answer fundamentally differ
from those in the above repository mining studies [12, 16–
18, 20]. Mining exposes the “ground truth” of development
practices by focusing on artifacts. We use surveys to enable
more direct inquiries to humans about their decision making
process. Decision making has unclear physical artifacts and
is subject to perception: it is unclear how to understand de-
cision making based on just typical repository information.
Furthermore, we use surveys to reveal extrinsic data that is
not in typical software repositories, such as demographics.

Small-scale surveys have been used to answer some lan-
guage usage questions. Datero and Galup ran a web survey
to examine differences in language knowledge by gender [6].
They found modest differences. For example, within a pool
of professionals, male developers were more likely to know
most languages, and COBOL was the only language with a
pronounced female lean. A study at a single American uni-

versity found no significant bias in the languages learned
by undergraduates there, however [19]. Not presented, our
data shows that language selection is gender-neutral on a
broader sample than the above work. However, we reported
even stronger biases relating to age and organization size.
The large scale of our survey has enabled regressing along
many dimensions such as these.

Adoption decisions for domains beyond programming
languages is studied by social psychologists, management
science researchers, and other social scientists. Several
leading models of adoption arose over the years, such
as the Technology Acceptance Model (TAM) [7] and the
Unified Theory of Acceptance and Use of Technology
(UTAUT) [25]. These causal, quantitative models relate fac-
tors such as perceived ease of use to ultimate adoption deci-
sions. Within a particular population, they predict much of
the variance in an individual’s desire to adopt a new technol-
ogy [24]. Models that have been tuned for software develop-
ment have been able to explain 63% of the variance in devel-
oper intention to use object-oriented design techniques [10].
Whereas that work aims to understand the general factors
behind technology adoption, we seek those that are specific
to programming languages.

Generalizing the notion of adoption even further, Rogers’
seminal Diffusion of Innovation process is perhaps the most
extensively studied model of adoption [22]. A 2000 study
shows that this model accurately described the process by
which COBOL programmers at a large financial-services
company learned the C language [4]. A subsequent single-
organization study looks at the decision of whether to adopt
a formal development methodology [21]. In both cases, the
researchers ignored the intrinsic technical attributes of the
language or methodology in question, and considered social
factors exclusively: we examined both. Furthermore, both
cases use sample sizes much smaller than ours: 71 in the
first case, and 128 in the latter. We provide a broader view
by examining more factors and over wider scenarios.

Finally, various histories of programming languages pro-
vide insight into the adoption of specific languages. For ex-
ample, SIGPLAN sponsors a series of conferences on the
history of programming languages (HOPL). The bulk of the
papers are retrospectives by language designers on a par-
ticular language or related sequence of languages. In con-
trast, our work seeks to make comparisons across languages
and communities. Furthermore, HOPL retrospectives tend to
include deep but anecdotal analysis by language designers,
while we perform quantitative data analysis.

9. Conclusions
This paper has looked at programming language adoption
through the lenses of four separate research questions: large-
scale statistics, programmer decisions, language learning,
and general beliefs about languages. These separate lines
of inquiry support each other and paint a unified picture



of adoption, with lessons for language designers, advocates,
educators, and employers.

In Section 3, we asked what statistical patterns language
adoption obeyed. We demonstrated three claims: First, pop-
ularity falls off steeply and then plateaus according to a
power law. Second, the less popular a language, the more its
popularity varies from niche to niche – popular languages
are consistently popular across domains of use, less-popular
languages tend to have specific domains. Last, developers
switch between languages based primarily on the domain
and use of a language, not based on its linguistic features
(syntax or semantics.)

Section 4 used survey data to show what factors influ-
ence developers when picking projects. We found that exist-
ing code, existing expertise, and open source libraries are
the dominant drivers of adoption. This dovetails with the
previous finding: libraries and code are niche-specific, and
therefore this developer motivation helps explain the statisti-
cal findings above. The fact that developers typically do not
consider particular language features important in choosing
languages is likewise consonant with our statistical finding
that developers do not tend to switch between semantically
related languages.

One consequence of these findings, taken together, is
that language designers and advocates should emphasize
libraries. It is easy to find anecdotal examples of libraries
that had major influence on language adoption within niches,
such as numpy for numerical programming in Python and
Rails for web applications in Ruby.

Section 5 asked what causes developers to learn lan-
guages. We find that professional developers learn and forget
languages throughout their careers, and that as a result, age
has little to do with language choice. Some languages are
easier to learn than others, and the self-reported ease with
which developers learn does not seem closely related to the
underlying simplicity of a language’s formal semantics. Past
education has moderate influence. Having been exposed to a
language paradigm in school makes developers more likely
to learn or remember similar languages later in their career.

In both Sections 4 and 5, we found that developers demo-
graphics strongly differ in their language preferences. We
make two observations relating to this occurrence. First, em-
pirical analysis of programs written in the same language
may need to check for sample bias due to developer demo-
graphics. Second, ecological models may apply to language
adoption as we hypothesized in earlier work [15]. Ecologi-
cal models would predict that languages spread along demo-
graphic boundaries because the languages compete for them.
Our data reveals that spread patterns exist, and that develop-
ers do indeed maintain a limited working set of languages.

Finally, we looked at developer feelings about languages
when not tied to particular projects. Libraries still rate
highly, supporting the results of Section 4. We also found
that developers have divergent feelings about semantically

similar languages features. This suggests that experience and
training shape developer language perception, underscoring
the results in Section 5 about the importance of education.
We find that developers consider ease and flexibility to be
more important than correctness. Developers show signif-
icant unease and unenthusiasm for static typing. This sug-
gests that today’s type systems may err too much on the side
of catching bad programs rather than enabling flexible devel-
opment styles. Developers emphasize the benefit of types in
understanding programs, suggesting one benefit researchers
can build upon.

Our results also help inform the broader computer science
community. Since language selection is tied to libraries,
legacy, and familiarity, there are history-effects and therefore
potentially multiple stable equilibria. This suggests that if
today’s popular languages can be replaced or improved, the
changes will be durable.

Beyond the immediate results of this study, our experi-
ence has implications for future empirical research of pro-
gramming languages, which is less actively practiced than in
software engineering. We found survey methods to be a pow-
erful tool for exploring hypotheses about language adoption.
We suspect these methods will be increasingly valuable go-
ing forward, especially given the popularity of the Internet
and online courses. Likewise, we hope our data, and the
methodology subtleties we encountered in gathering it, will
support future analysis efforts. Of particular note are our
large set of responses, tracking of respondent demograph-
ics, and solicitation of data about concrete languages and
projects.

We have examined basic questions about language adop-
tion. Going forward, there are many more questions about
the sociotechnical nature of programming languages [15].
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