
Static Extraction of Program Configuration Options

Ariel Rabkin and Randy Katz
EECS Department, University of California, Berkeley

{asrabkin,randy}@cs.berkeley.edu

ABSTRACT
Many programs use a key-value model for configuration op-
tions. We examined how this model is used in seven open
source Java projects totaling over a million lines of code. We
present a static analysis that extracts a list of configuration
options for a program. Our analysis finds 95% of the op-
tions read by the programs in our sample, making it more
complete than existing documentation.

Most configuration options we saw fall into a small number
of types. A dozen types cover 90% of options. We present
a second analysis that exploits this fact, inferring a type for
most options. Together, these analyses enable more visibil-
ity into program configuration, helping reduce the burden of
configuration documentation and configuration debugging.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Documentation,Extensibility

General Terms
Management, Measurement

Keywords
Configuration, documentation, experiences, static analysis

1. INTRODUCTION
Modern systems software often exposes a wide range of

configuration options to users. By setting configuration op-
tions, users can control many aspects of execution. Configu-
ration determines such aspects of execution as where in the
local filesystem to store data, which ports a server should
bind to, and even which algorithms should be used in various
parts of a large system.

Program configuration is often stored as a map from op-
tion name to value. Some configuration mechanisms, such as
the Unix system environment, use arbitrary strings as option

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE May 21-28 2011, Waikiki, Honolulu , HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

names. Other mechanisms, such as the Windows Registry,
store options hierarchically in a tree structure. Still other
systems use XML formats for configuration data, where the
path to the value represents its name. This key-value style
of configuration is convenient for programmers, because it
makes it easy to add new options incrementally. There is no
schema or centralized list of supported options.

Several kinds of errors can arise from this style of config-
uration. User-written configuration files can assign values
for options that a program never reads, either because of
a typing error or because program evolution resulted in an
option being removed or renamed. Documentation is of-
ten updated separately from code, and can fall out of step
with an evolving program [28, 29]. As we show, documenta-
tion sometimes claims that an option has a particular effect,
when in fact that option is never used at all. Conversely,
a newly added configuration option does users little good
if it is not documented. The open source systems software
we study all have significant undocumented configurability,
suggesting that this is a widespread problem.

Programmers often distrust documentation, preferring to
read source code to understand program behavior [18, 29].
While this attitude may be appropriate for programmers,
it works less well for users and administrators. Bad doc-
umentation is a significant bar to adoption of open-source
software, as well as a considerable headache for users [19].
Excess configurability and poor documentation have been
recognized as a problem for several years [22] but solutions
have been slow to emerge.

This paper argues that static analysis can compensate for
the weaknesses of this key-value style of configuration man-
agement. Static analysis can extract a schema for configu-
ration, tying both user configuration files and program doc-
umentation back to the actual structure of the associated
program. This can be done efficiently for substantial exist-
ing systems that would be expensive or difficult to rewrite.

We make three contributions. First, we document the
way this key-value configuration pattern is used in a range
of open source projects. We analyzed seven open-source pro-
grams, totaling well over a million lines of code and repre-
senting the work of many dozens of developers. We observed
that configuration options tend to be used in standardized
ways. There are modest number of use patterns that to-
gether account for more than 90% of options. We found
pervasive documentation errors. Every program in our sam-
ple had documentation for options that do not actually exist
as well as significant numbers of undocumented options.

These pervasive errors motivate our second contribution.

We describe and evaluate a static analysis that outputs a
list of configuration options potentially used by a program
and the program points where each option is read. This
analysis finds more than 95% of the options in the programs
we inspected. This accuracy rate is higher than in the doc-
umentation of mot of the associated programs, making the
analysis practical for finding documentation errors.

The analysis can also help catch mistakes made by users.
In operational experience at Yahoo!, typographic errors in
option names are a major cause of problems with Hadoop
and related programs1. A Hadoop user can easily set the
value of a non-existent option like default.fs.name when
they meant to refer to a similarly-named real option, fs.

default.name, instead. There is no central list of valid op-
tions that can be used as a dictionary for a “spell check
for configuration”; references to configuration options are
scattered throughout the code. As a result, this sort of er-
ror produces few overt symptoms and can be frustrating to
track down. The developers could potentially maintain a
list of valid options for use in configuration checking, but
the many flaws we found in program documentation suggest
that task is difficult and error-prone. Automated analysis,
by reducing the burden, can help.

Last, we present and evaluate an additional analysis that
can infer the domain of valid values for an option. Our ap-
proach works by recognizing the specific patterns by which
developers use configuration. This approach finds types for
most options in our sample, and has few false positives. This
analysis builds on the previous one, consuming the set of op-
tions read by the program. It also builds on (and validates)
the results of our empirical study: recognizing patterns in
code makes sense because a small set of patterns covers a
large fraction of options.

There are several applications for this analysis. It can
be used to produce a first draft of program documentation
for humans. It can also produce machine-readable specifi-
cation for the permissible values of options. There has been
work by the systems community on automatic performance
tuning, for instance [8], and by the software engineering
community on configuration-aware resolution of reflection
in method calls [27]. Being able to automatically find tun-
able numeric parameters or class-name parameters would be
helpful in these contexts.

Finding constraints on option values, even on a subset
of options, would help catch additional user configuration
errors. Our analysis can automatically determine not only
that hadoop.util.hash.type is an option, but that the only
possible values for it are “murmer” and “jenkins”. Programs
do not consistently report configuration errors [13]; often,
they silently substitute a default value. Extracting con-
straints on option values enables static checking for these
sorts of mistakes, potentially saving hours of user time if a
bad configuration value causes a long batch job to go awry.
This extends our “spell check for configuration” to validate
values, not just names.

We opt for static, rather than dynamic analysis. Many
options are used only in particular program modules or as a
result of particular inputs. Hence, dynamic testing has poor
prospects for finding all uses of configuration options. Static
analysis can attain high coverage much more easily. Our
analysis uses standard points-to and call graph construction

1Owen O’Malley, Yahoo!, Personal communication, January
2010.

algorithms. Our code bases of interest make heavy use of
reflection and remote procedure calls. This requires some
tailoring of the analysis implementation. Those aspects of
our analysis are discussed in Section 4.2.

We begin in the next section with our empirical measure-
ments. In Section 3 we show how static analysis can find
the set of options used by a program. In Section 4, we de-
scribe and evaluate an analysis framework for determining
the types of configuration options. Section 5 discusses how
general the problem and solution presented in this paper
are. Section 6 describes related work. We summarize our
observations and conclusions in Section 7.

2. QUANTIFYING PROGRAM CONFIGU-
RATION OPTIONS

To better understand program configurability, we looked
at the configuration mechanisms in a range of existing soft-
ware projects. We looked for large highly configurable open-
source software packages written in Java. We restricted our-
selves to Java because our static analysis implementation
targets Java and we use the results of the survey discussed
here as ground truth in evaluating the analysis. Each of
these projects includes several different programs, sharing
much of their code.

The projects we analyze span a range of applications and
have a wide variety of developers. Several were developed
for industrial use by commercial developers. Hadoop is a
distributed filesystem and MapReduce implementation [9]
largely developed at Yahoo! and Facebook. HBase [2] is a
re-implementation of Google’s BigTable storage architecture
developed by a loose collection of open-source developers
spread across several companies. Derby is an open-source
database originally developed as part of IBM’s Cloudscape
project [1]. Cassandra is a distributed storage service devel-
oped at Facebook [17]. Other projects were developed in an
academic context. FreePastry is a peer-to-peer distributed
hash table intended for the wide area, originally developed
at Rice [25]. JChord is a program analysis engine developed
at Stanford [23]. Nachos is a model operating system envi-
ronment used for undergraduate education at Berkeley [11].

The code we analyze is the work of many programmers.
We do not have precise counts for the number of contribu-
tors to each project but in aggregate the number is surely
over 100. Derby and Hadoop together list 50 committers.
Typically there are several times as many occasional con-
tributors who are not individually credited. We therefore
believe the programs in our study represent a range of pro-
gramming styles and are unlikely to be unduly influenced by
the idiosyncrasies of a few individuals.

For each program, we consulted the documentation and
default configuration files to derive a list of options. We then
manually classified each option.

2.1 A taxonomy of configuration options
Rather than impose a taxonomy ex ante, we built ours

bottom-up, describing each option as we encountered it and
then looking for patterns. We show statistics for each of the
individual programs in our study in Table 1. We also present
background statistics about each program. As can be seen,
there is substantial variance across these programs: the ab-
solute number of identifiers and the proportion of identifiers
in each column varies widely. FreePastry, for instance, has

Application LoC KB compiled Numeric Identifier Mode Other All options
Cassandra 36,823 1,961 17 14 3 2 36
Derby 1,136,718 7,903 16 17 23 13 69
FreePastry 175,085 6,073 154 8 39 10 211
Hadoop 167,653 5,440 89 70 31 16 206
HBase 104,781 3,149 38 20 3 3 64
JChord 35,761 1,209 5 26 14 12 57
Nachos 10,896 467 2 4 10 0 16

Total 321 159 123 56 659

Table 1: Numbers of options by application, with breakdown by type of option. KB compiled = size of
compiled binary, in kilobytes.

Type Category Total
Time Interval Numeric 118
Count Numeric 115
Boolean Mode 104
File Identifier 60
Size Numeric 53
Class Name Identifier 38
Address Identifier 28
Fraction Numeric 28
Mode name Mode 18
String Other 17
Port number Identifier 13
Internal ID Other 9
Password Other 8
URI Identifier 7
User ID Other 7
Network Interface Identifier 5
Other - 31

Total 659

Table 2: The most common configuration option
types, with classification.

a very large number of controllable timers that boosts both
the total and numeric columns. Table 2 shows our list of
option types and how many instances we found of each type
of option, summing across all the programs in our study.

Several categories need explanation: a count is an integer
parameter describing how many of some entity should ex-
ist, such as threads in a pool, iterations of a loop, and so
forth. A size is a quantity of memory or storage, measured
in bytes. A mode name is a string, drawn from a small set,
that selects how a program should behave from a small set of
options. An internal ID identifies some program-defined en-
tity, such as distributed files in the case of Hadoop. “String”
and “Number” are catch-all types for string or numeric op-
tions that are not used in some other well-defined way by
the program. For instance, JChord can run a target program
using dynamic instrumentation; the labels used to indicate
each test run are uninterpreted strings.

As can be seen, most options fell into a handful of types.
The top three categories together account for slightly over
half of all options seen. Numeric options are very com-
mon and are primarily used for a small number of pur-
poses: to control timers, resource pool sizes, and memory

allocation. Non-numeric options are overwhelmingly exter-
nal identifiers, often designating files, network addresses, or
Java classes.

Some options include complex structured data. Exam-
ples include regular expressions, date format strings, or com-
mand line arguments for a subprocess. These complex op-
tions are rare in the programs we have inspected: we found
a total of four options controlling process arguments and
three options with nontrivial internal semantics: one regu-
lar expression and two strftime-style date format strings.

The list of option types can be further summarized. Most
options fall into one of three broad categories. The largest
category of options is tunable numeric parameters, control-
ling buffer sizes, time-out periods, and so forth. (This in-
cludes both integer and floating point options.) Another
large group of options select a mode of operation from a
small set. This includes Boolean options, as well as mode
names. The last group of options consists of external iden-
tifiers: strings or numbers that refer to some entity outside
the program, such as file names or network addresses. Java
class names are effectively also external identifiers, since the
runtime maps them to the names of files in the Java class
path. A handful of option types remain outside this tri-
partite classification. Internal identifiers, opaque strings or
numbers, and a few miscellaneous types such as passwords
do not fit neatly into any of the three categories mentioned
above. These are tabulated as “other” above.

While our ad-hoc approach worked reasonably well, there
were a few difficulties. Some options can take a list of values.
We treated “Type” and “list of Type” as equivalent. When
a string is used as a suffix to a file path, we count it as a
string, not a file name. Several Hadoop options are path
names to files in a distributed filesystem. We consider these
to be internal identifiers, not file names.

2.2 Configuration APIs
We also looked at the structure of the code each program

used for reading and processing options. Of the seven pro-
grams in our sample, six had a narrow and well-defined API
for configuration. In each, there was exactly one class that
exposed a key-value interface to the rest of the program,
through which configuration options could be read. These
classes offer a set of methods for retrieving configuration val-
ues of particular types: getBoolean, getInt, and so forth.
Each method takes the name of an option as parameter and
optionally a default value to be used if the option is not set.
The Java System Properties API, part of the Java Platform
standard, offers this interface as well. The Unix system envi-

ronment is also a key-value map. We therefore conclude that
this style of interface represents a popular and widespread
programming abstraction.

Derby was the one partial exception we saw to this pat-
tern. In Derby, there are three levels of configuration, con-
sulted in turn: global options specified in a file, per-database
options, and options specified programmatically. Each op-
tion can be set in some subset of those tiers. A substan-
tially more complex API is needed to manage configuration.
There are configuration retrieval methods in several differ-
ent classes, differing in which locations are searched for con-
figuration. Each of these configuration retrieval methods,
however, followed the standard pattern, taking a string ar-
gument for the option name plus an optional default value.

The concrete syntax for configuration varied significantly.
Hadoop and HBase use an XML-based format containing
key-value pairs. Cassandra uses a more complex XML struc-
ture, with nested elements; the program reads elements from
this file using XPath queries in an essentially key-value style.
The remaining programs use a flat ASCII file with a list of
name=value pairs.

Some of the programs in our study also accept command-
line arguments. In many cases, these arguments duplicate
the functionality of configuration file options or are accessed
via a similar key-value interface. Hadoop largely eschews
command line options; most of Hadoop’s component pro-
grams only accept options that set configuration values.

3. FINDING OPTIONS
In this section, we answer two research questions about

configuration options: how good is existing configuration
documentation and how well does static analysis do com-
pared to this human standard. This is motivated by our de-
sire to have automated tools check documentation, or even
produce the authoritative version.

Today, developers looking to extract a list of configuration
options from source code would have to resort to searching
through the text for calls to configuration read methods.
This approach cannot readily find all option names. In the
code we examined, we saw many examples of application
methods that take an option name as parameter. As a re-
sult, there can be several function calls between the string
literal for an option’s name and the point where that name is
passed to a system or library-defined configuration method.
All of the programs in our study define several utility meth-
ods that take an option name and return a new object cor-
responding to that name. For example, in Hadoop there is
a method that take an option name as parameter, read the
value of that option, and reflectively creates and object of
the class named by that value. Hence, finding which strings
are used as option names requires inter-procedural analysis
to track these string constants through method calls.

Simple lexical approaches would yield less precise infor-
mation than our analysis. All of the software packages we
examined consist of multiple executables sharing large por-
tions of code. It can be helpful to know which component
programs will use which options, or even whether an op-
tion is only read in dead code. Our technique derives this
information readily, but lexical techniques cannot.

3.1 Approach
Our approach is outlined in Figure 1. We break the overall

problem into two major pieces: First, finding the program

Construct points-to and call graphs.

Mark known configuration methods.

Mark option-name arguments to these methods.

while (not converged to fixpoint)

for each method m:

if an argument of m used as an option name

Mark method as conf. read call.

Mark argument as option name.

Find possible string params at call sites

Output option names and read points.

Output methods taking option names as arguments.

Figure 1: Pseudocode for analysis to find options.

points where options are read or written; second, finding
the possible option names at each of these points. These
two stages are somewhat independent; different algorithms
can be used in each without disrupting the overall structure
of our approach. We output both the set of program points
that read options and a regular expression for the options
read at each of these points. This means that our analysis
is independent of the syntactic details of configuration file
format. Instead, we rely on the APIs, which tend to be more
consistent across programs.

The usual API for configuration consists of a set of related
calls, each of which has a string-typed argument correspond-
ing to the option name. We assume that we have either an-
notations on these API methods, or, equivalently, a list of
methods returning or setting configuration. For this study,
the annotations required were compiled into the code of the
analyzer. For each program, these consisted of a few lines
of the form “include all methods in class Properties whose
name starts with get.” These annotations also specify which
parameter is the name of the option. (This is generally the
first parameter of string type, in our experience.)

We expand this set of configuration-reading methods by
finding all methods taking a string argument, where that ar-
gument is passed as an option name to an already-discovered
configuration method. This accounts for the common pro-
gramming pattern of having wrappers around other config-
uration calls to encapsulate type conversion. For example,
FreePastry implements a method getInetSocketAddress that
takes an option name as a parameter and returns a socket
corresponding to the value of the option. Our analysis dis-
covers that the method uses one of its arguments as an op-
tion name. We therefore infer that getInetSocketAddress

is itself a configuration-reading method and that its return
value corresponds to that option name. Finding these addi-
tional configuration read calls lets us find the earliest con-
figuration read point in a call chain. This improves the
precision of subsequent analyses, including those discussed
in the next sections. Effectively, we are treating configu-
ration reads context-sensitively, without the expense of a
full-program context-sensitive analysis.

Once we have the set of option read points, we find the
string parameters potentially passed to each read call. Most
configuration options are named by compile-time constant
strings. Sometimes, however, option names are constructed
dynamically. A common pattern is to construct configura-
tion option names out of several components, of which just
one is variable. For example, in Hadoop, the implementa-
tion class used to access a filesystem of type t will be the

value of option fs.t.impl.
We implemented a string analysis to capture option names

constructed as a fixed sequence of variable and constant
fields, using the any-string regular expression .∗ to handle
dynamic inputs. For the example mentioned above, our code
produces the regular expression fs.\.*\.impl. This analy-
sis captured nearly all the dynamic option name creation we
saw in our programs. This approach was scalable, easy to
implement, and integrated cleanly with out points-to frame-
work. More sophisticated string analyses (such as JSA [4])
could be used without changing our overall approach to find-
ing configuration read points.

Configuration options are sometimes used by one part of
a program to affect another part, rather than as a way for
users to alter the program. In these cases, the lack of doc-
umentation for users is not a problem. Accounting for this,
we do not report an option as undocumented if its value is
set programatically. This requires that we find written op-
tions, as well as read ones. Our approach for finding writes
is the same as for reads.

We have implemented the above analysis for Java byte-
code. Our implementation relies on the JChord program
analysis toolkit [23]. Our points-to and call graph construc-
tion is context insensitive, flow insensitive, and field sen-
sitive. We use the SSA-representation of the program, as
advocated by Hasti and Horwitz [10]. We resolve reflection
using the cast-based technique described in [21].

3.2 Results
We evaluated the performance of our technique by run-

ning our prototype on each of the seven software packages
listed in Section 2. Our research goal was to measure the
completeness of the technique, as compared with the exist-
ing human-written documentation. When there were mis-
matches between our output and the documentation, we
manually checked the code, searching for substrings of the
option names in question. Table 3 represent our best ef-
fort at reaching“ground truth”on program configurability in
terms of both undocumented and unused options. By “un-
documented” options, we mean detected options not men-
tioned in any user-readable documentation associated with
the package, including its website. By unused, we mean op-
tions that are never referenced anywhere in reachable code.

Table 4 shows how well our analysis does at matching this
manually-generated ground truth. Our analysis found just
over 96% of documented options that actually exist. Our
tool failed to find uses for 61 documented options. For a
third of these, we were able to manually find uses of these
options. The remaining two-thirds appear truly unused. In
some cases, we found commented-out code referencing these
options, suggesting that they used to exist and have since
been removed.

Put another way: When our automated analysis and the
program’s documentation disagree about whether an option
exists, the automated approach is more likely to be correct.
This also is true on a per-program basis. Our analysis is
more accurate than human-written documentation on five
of the seven projects.

Our technique will have false positives in cases where the
reachability or string-flow analyses are imprecise. We cannot
evaluate this directly because we have no ground truth for
whether an undocumented option might potentially be read.
Note that reachability is not well-defined for the programs

Project Unused Opts. Undocumented Opts.
Cassandra 2 6% 3 8%
Derby 2 3% 26 38%
FreePastry 24 11% 12 6%
HBase 1 2% 21 33%
Hadoop 6 3% 34 17%
JChord 3 5% 29 51%
Nachos 3 19% 3 19%

Table 3: Manually confirmed documentation errors.
Percentages are of all documented options for each
project.

Application Found True False
Unused Unused positives

Cassandra 3 2 1
Derby 9 2 7
FreePastry 24 24 0
Hadoop 10 6 4
HBase 9 1 8
JChord 3 3 0
Nachos 3 3 0

Total: 61 41 20

Table 4: Accuracy in finding unused options

in our study, since framework code can be invoked by user
code not present at analysis time.

Looking at the undocumented and unused options, we no-
ticed a number of patterns by which these documentation
errors arose. Many undocumented options appear to be new
and specialized features, added for some specific purpose
and not yet documented. Hadoop and HBase, which are
production systems with many users, have disproportion-
ately many of these specialized and undocumented features.
Many unused options relate to specialized features, added
in the past for exploratory purposes and since removed. As
a result, FreePastry, which is an academic system used as
a research testbed, has a large number of these unused op-
tions. In some cases, code to read the option is present but
commented out. JChord is also a research testbed. Here,
though, the consequence seems to be that researchers add
additional options in their portions of the system without
documenting them.2

Undocumented options tended to be tunable parameters
or Boolean flags, not external identifiers. We conjecture that
developers, trained to avoid hard-coding constants, intro-
duce options as a way to specify a constant while retaining
flexibility. Some options are described in the program source
code as “deprecated;” unexpectedly, these do not appear to
be a major source of undocumented options. These options
were often still referenced in documentation, even if only to
describe them as deprecated.

In Hadoop and Derby, we noticed an additional pattern.
Undocumented options were being set in test code and read
in the application code. (We filter out options that are set

2JChord does not have a formal release process; we are com-
paring in-development sources to in-development documen-
tation.

in the main body of a program’s code. The options we dis-
cuss here are set only in unit tests.) These options appear to
have been added solely for the benefit of test writers. For in-
stance, Hadoop has several timers controlling activity that
normally happens hourly or daily. By setting an undocu-
mented option, unit tests can make the behavior in question
occur much more quickly. Test-only options accounted for
half the undocumented options in Hadoop and somewhat
over half for Derby.

We observed the following pattern by which unused but
documented options arise. Sometimes, an option makes
sense in the context of a particular implementation of a pro-
gram feature. Sometimes, the feature is rewritten in such a
way as to make the option unnecessary or meaningless. but
the documentation is not updated.

3.3 Sources of Error
We now discuss the reasons why our analysis does not find

all option uses. By far the largest problem, accounting for 10
of the 20 false positives, was code that performed significant
string manipulation on option names. HBase and Derby
break the key-value model slightly, iterating over a subset
of options and renaming them before use. Our analysis is
not sufficiently sensitive to determine the set of names being
iterated over. Path sensitivity would be required to model
code of this sort accurately. Some errors are caused by more
traditional limitations of static analysis. Four options in
Derby are read in code invoked indirectly via native code
in the system library, where no single-language analysis can
easily follow.

Some systems, including Hadoop, do a form of macro sub-
stitution for option values. In Hadoop, if the value of a
configuration option includes the name of another option,
wrapped in braces, the value of that included option is sub-
stituted. Nothing in the Hadoop code indicates that the
substituted-in option would be read. This caused one false
positive for our analysis. This could be handled as a special
case in practice: any option lexically included in this way in
a configuration file should be marked as used.

Turning from unused options to undocumented options,
the biggest limitation we found was actually not a problem
with our analysis at all, but with our notion of documenta-
tion. There are two significant categories of options picked
up by our analysis that are irrelevant for documentation
purposes. While programs are expected to document their
own options, there is seldom cause to document the options
used by included libraries. They are for client programs, not
users. Second, not all system properties are configuration
options. Java uses system properties both for configuration
and also to expose information about the running machine,
such as the operating system version. These properties have
their values set by the run-time, not by users, so there is no
reason for them to be documented.

These limitations are inconveniences, but are unlikely to
pose significant problems in practice. Programs and libraries
often have a shared prefix for their options (such as hbase.*),
making it reasonably easy for humans to determine which
options belong to which code base. The second problem,
that not all system properties are configuration options,
could be fixed by white-listing the standard JVM options.

4. CATEGORIZING OPTIONS
In Section 2, we noted that the large majority of the con-

figuration options we encountered belong to one of a fairly
small number of types. In the programs we inspected, these
types often correspond to specific programming patterns.
By finding the pattern, we can infer the type of the option.

We are not attempting to replace human-written docu-
mentation. We have three goals: helping developers write
documentation, helping developers spot mistakes, and pro-
ducing machine-usable annotations on options to help user
troubleshooting. In all these cases, false negatives are fairly
innocuous: an incomplete but accurate analysis is helpful,
but false positives can be confusing. Consequently, our anal-
ysis is tuned to return “don’t know” rather than to make
wrong guesses.

Option names, while often descriptive, are sometimes mis-
leading. Hadoop includes an option mapred.skip.map.auto

.incr.proc.count. Despite the name, this option is actu-
ally a Boolean. Printing inferred types alongside the names
of undocumented options can help remind programmers what
the option does.

Inferring types helps developers check that options are
being used in the ways they expect. We have seen options
that are read, stored, and logged, but put to no substan-
tive use. The analysis we present here can help developers
spot these cases. If the analysis finds an unexpected type
for an option, that is suggestive of an underlying bug or in-
correct documentation. One striking example concerns the
ij.exceptionTrace option in Derby. This option is docu-
mented as a Boolean, but our analysis was unable to deter-
mine a type. On inspecting the code, we discovered that
the value was never used at all: the true states of the option
were “set” and “unset”. Setting any value, even “false” would
enable the option; surely an unexpected behavior. We also
spotted several options in FreePastry that were documented
as being time intervals, but that were never used this way.
They were read into the program and logged, but the code
to use them was commented out.

This analysis also enables stronger automated checking of
configuration files, effectively a“configuration spellcheck”for
values as well as option names. This is only meaningful for
some option types. For example, almost any string is poten-
tially useable as a file name or password. Fortunately, our
analysis works well on most types for which invalid values
can be readily flagged.

The approach we take is to look for patterns in how pro-
grams use configuration values. This helps validate our
taxonomy of configuration options, since a type that cor-
responds to a well-defined programming pattern is likely to
be a useful abstraction. Just as FindBugs [12] and simi-
lar tools exploit a library of recognizers for various types
of bugs, we envision a separate recognizer for each type of
configuration option. Because the number of common op-
tion types is limited, the implementation effort required is
reasonable.

We have implemented recognizers for most the option
types listed above in Table 2: Booleans, class names, files,
fractions, network addresses, network interface names, mode
names, and port numbers. (We refer to these as“recognized”
types). Our analysis splits numeric options into“time”,“port
number”, and “other,” rather than attempting to distinguish
“counts” from “sizes. In our sample, there were 528 options
found by the option-finding analysis and belonging to rec-
ognized types. This is the set against which we evaluate our
analysis.

4.1 Approach
We exploit three basic techniques in recognizing option

types: looking at the return types of configuration reads,
looking at which library methods configuration data is passed
to, and looking at which values are compared with one an-
other. We assume the presence of a call graph, a points-to
analysis, and the results of the above analysis specifying
which configuration options are read at each point.

The simplest of our three approaches is to inspect the
return type of the configuration call. Many configuration are
read using typed methods, such as getBoolean, getFloat,
and so forth. If an option is exclusively read via getBoolean,
then we conclude that option can only hold Boolean values.

Some programs read options as untyped strings, and then
convert them to the correct type. Our second technique
handles this case. Instead of looking at how values enter
the program, we look at how they leave the program: which
library calls they are passed to. If a string is passed to the
library parseBoolean method, we can infer that its value
is expected to be a Boolean. This technique works well for
identifiers. There are a small number of common system
or library calls for opening files or resolving host names.
We use approximately 30 rules to cover the option types in
our classification. These rules are stored in a simple lookup
table, mapping from called method and argument number
to inferred option type. This technique requires a dataflow
analysis to connect option reads with subsequent uses.

Mode options, with a handful of valid values, are an im-
portant special case. Here, we are often able to not only
determine that an option represents a mode choice, but are
also able to determine the set of valid values. We have seen
only two patterns by which programs use mode variables.
Often, programmers parse these options by comparing the
returned value against a sequence of string constants. We
are able to retrieve this set of valid option names by in-
specting the strings a given configuration value is compared
with. Alternatively, programmers can define an Enumera-
tion class, and then use a standard library function to create
objects of this class. Here, we can retrieve the set of valid
values from the associated Enumeration class.

Similarly, we can often infer the parent type that a config-
urable class must have. When a configurable class name is
used to create an object reflectively, and that object is cast
to some type T, we infer that the permissible values for the
options are subtypes of T.

To help distinguish time-valued options from other op-
tions, we employ our third and last technique. There are a
handful of library calls for reading the value of the system
clock. If an option’s value and a known time value are used
together in arithmetic, we assume that the option is likewise
a time value. This works well in practice: we are able to find
90% of time options, with a 10% false positive rate. This
approach is intrinsically imperfect: We have seen configura-
tion options that are multipliers for time values. In these
cases, the multiplier should not be marked as “time” – it is
a dimensionless number, not a time period.

This analysis runs quickly enough to be used in the soft-
ware release process. Analyzing Derby, the largest program
in our set, took less than 30 minutes using a recent-model
laptop with 4 GB of RAM and a dual-core 2.2 GHz proces-
sor. Most of the running time was used in the underlying
points-to analysis, not in the type inference per se.

Options Fraction
Real documented opts.
of recognized types

528 100%

Success 433 82%
All failures 95 18%

Out of scope 33 6%
Time/not-time miss 27 5%
Wrong guess 12 2%
No guess, other reason 23 4%

Table 5: Overall success rate for type inference and
partial breakdown of errors. Percentages are of doc-
umented options of recognized types found automat-
ically.

4.2 Implementation
As with the previous analysis, we used JChord to im-

plement our option type determination. Unlike the previ-
ous analysis, finding option types requires a whole-program
dataflow, tracking the values returned from configuration
read points.

To cope with the complex, reflection-heavy programs in
our study, we made several modifications to JChord’s de-
fault algorithms. Most of the programs in our sample are
networked services, making heavy use of remote procedure
calls (RPCs). This means that much of the code in these
programs is never invoked directly; rather, these methods
are invoked via reflection. We handle this by specifying a
list of extra entry points for each program. These lists had
an average of three entries per program.

In Java, method dispatch depends on an object’s dynamic
type. Correctly modeling method calls on externally-supplied
objects therefore required us to modify the underlying points-
to analysis. We fall back on type-based alias analysis for
these objects [5]. We add an abstract object for every type.
When an entry point is invoked externally, we assume that
reference arguments point to the appropriately-typed ab-
stract objects. Reference-typed fields in abstract objects
point, in turn, to other abstract objects of the appropriate
types. In the programs we examined, RPCs are invoked
on singleton “server” objects. As a result, this abstraction
incurred no loss of precision.

In our experience, configuration options are seldom shared
between the program in question and component libraries.
To improve performance, we exclude library code from anal-
ysis. In most cases, once a value is passed into the library,
it ceases to be tracked. In two cases, however, we explicitly
model the behavior of library classes. Our points-to anal-
ysis is collection aware: if an object allocated at site h1 is
stored into a collection allocated at site h2, then subsequent
reads from that collection can return the object with site h1.
We also explicitly model the string-to-primitive conversion
functions in the JVM, thus handling code that, for example,
reads an option as a string, converts the string to an integer,
and uses that integer as a time delay.

4.3 Results
We compared the results of our automated analysis to the

manual labels we described in Section 2. Our results are
summarized in Table 5. We look only at options found by
the option-finding analysis discussed in Section 3; we want

 0

 20

 40

 60

 80

 100

Boolean
Fraction
Class Nam

e
Special
Address
File
Portno
Net. Interface
Size
Count
Tim

e

P
er

ce
nt

 o
f t

ru
e

to
ta

l
In-scope

Found
False Pos

Figure 2: Accuracy in detecting option types. Only
includes recognized types. In-scope means the op-
tion is used within the program being analyzed, not
just in a library or external process.

to measure the effectiveness of type inference and option
finding separately.

Overall, we succeed 80% of the time. There is substantial
variation in success rate by type. Figure 2 displays this
variance. False negatives are the gap between 100% and
the “Found” bar. False positives (where the analysis finds a
wrong type) are labelled explicitly.

The types are ordered based on the primary means we
used to recognize them. The first two, Boolean and frac-
tional, are recognized primarily based on the return type
of the configuration read call; 24% of options of these types
were recognized using called methods, our second technique.
The next several columns are recognized entirely by this sec-
ond technique. Time options, the last column, were found
using our second and third techniques. Just over 80% of
time options were detected by their use in arithmetic with
known clock values; the remaining 20% were found based on
their use as arguments to API calls such as Sleep.

Our analysis recognizes virtually all options whose values
are Boolean, fractional or Java class names. It also does
reasonably well for network addresses. Performance on files
and port numbers is comparatively weak, for reasons dis-
cussed below. In distinguishing times from other numeric
parameters, we succeed approximately 90% of the time; er-
rors are roughly symmetric between false positives and false
negatives. This imprecision accounted for 28% of misses.

We found few cases where documentation incorrectly de-
scribed what an option did. We posit that developers add or
remove options more frequently than they change the type
of an existing option. Changing the meaning of an option
would likely break existing configurations, a major enough
change to trigger documentation changes. Mistakes in docu-
menting an option’s type do sometimes occur, however. The
peculiar option in Derby mentioned above where “false” is
treated as true is an example.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

Cassandra
HBase
Nachos
JChord
Derby
Hadoop
FreePastry

N
um

be
r o

f o
pt

io
ns

Right
No Guess

Wrong Guess

Figure 3: Success by application. Includes all op-
tions, not just those of recognized types.

Despite its limitations, we believe this technique has prac-
tical uses. Ignoring the imprecision in detecting time op-
tions, incorrect type inferences happened on fewer than 3%
of options. Our technique is accurate for several common
types that have syntactic constraints. Our analysis is pre-
cise enough to accurately warn users when they put a string
other than “true” or “false” for a Boolean option, or a simi-
larly invalid value for numerical or class name options.

4.4 Sources of error
This analysis has several sources of error. Sometimes, op-

tions are read and then passed to an external process before
being used. This was the biggest single source of imprecision
for our analysis. These externally-used or “out of scope” op-
tions accounted for 30% of all failures to infer a type, and
almost half of misses on non-numeric options. This problem
showed up primarily for identifiers, particularly file and host
names. Since these refer to system abstractions, they can be
readily passed to a subprocess or a library. The meaning of
a particular class name or Boolean option is more often con-
fined to a single program and therefore the uses for options
of these types are generally in-scope.

String operations were another major source of impreci-
sion. We do not track the contents of every string variable. If
a configuration value is stored inside a string and then later
parsed out, we do not report a type for the option. This is a
significant issue with file names, port numbers, and network
addresses: there are standard programming idioms (such as
constructing a host:port pair) that would defeat our analy-
sis. This could potentially be fixed by a more sophisticated
string analysis.

Some of the imprecision in finding time options is due to
the presence of numeric utility functions. Since our analysis
is context insensitive, we see time options “leak” through
these functions. Context-sensitive analysis would help solve
this problem. Otherwise, notably, points-to and dataflow
imprecision did not appear to be a major problem.

5. DISCUSSION
In the previous two sections, we described how to stati-

cally analyze programs to find the set of option names in use
and the types of these options. We now discuss how general
the problem and approach are.

More careful programming with attention to configura-
tion could reduce the mismatch between programs and doc-
umentation, and could catch more user configuration errors.
Current versions of Derby and in-development versions of
Hadoop attempt to confine option names to a small num-
ber of interfaces and classes. Our analysis could help enforce
this property during development, since it is efficient enough
to run every night alongside the regression test suite.

We focused on key-value style configuration, but there are
at least two other common styles for configuration manage-
ment where this same observation applies. Many programs
have graphical configuration management interfaces. Our
techniques are potentially applicable to these programs; of-
ten, the graphical interface masks an underlying key-value
model and not all options are exposed via the graphical in-
terface. Another common model for configuration is struc-
tured XML, where the program walks the DOM tree to re-
trieve values. An advantage of this style for programmers is
that schema validation can catch a wide variety of user er-
rors. The downside is that programming with this approach
can be more cumbersome. Retrieving an option by name or
an XPath query can be done a single line; walking the DOM
tree cannot.

The techniques presented in this paper could be general-
ized to this alternate style. The limitation in generalizing
our analysis is matching program points to the DOM nodes
they retrieve. Other work has shown that static analysis can
model the output (including output XML) from a program
fragment [6, 14]; similar techniques may be applicable here.

We focused primarily on large highly configurable sys-
tems, with dozens or hundreds of options. Many programs,
however, are small and have just a few named configuration
options, commonly environment variables. The APIs to re-
trieve environment variables fall into the key-value pattern
we have shown is easy to analyze. Hence, our technique
would be useful to extract and model environment depen-
dencies in smaller programs.

Our prototype implementation of our analysis was con-
fined to Java. However, the key-value configuration model
we focused on is also used in other contexts. While Java is
a comparatively easy language to analyze, our results used
fairly simple points-to algorithms, suggesting that optimal
points-to accuracy is not required for this domain.

6. RELATED WORK
We describe three areas of related work. We automated

efforts to document program behavior, configuration-aware
program analysis, and configuration debugging techniques.

The general topic of automatic documentation of program
behavior has been addressed previously. Rubio-González
and Liblit show that static analysis can catch incorrectly
documented error code return values in the Linux kernel [26].
Kremenek et al. show that static analysis can find resource
allocation and deallocation sites in real-world systems pro-
grams, without the benefit of annotations [16]. Buse and
Weimer show that the exceptions thrown by Java functions
can be inferred more accurately than they are currently doc-

umented [3]. Static analysis approaches can also extract
higher-level properties of program behavior, such as file or
network packet formats [20]. Wang et al. use dynamic taint
tracking to find security-related options. [32].

Our approach to configuration type inference relies on the
fact that many options are used in similar ways and that
programmer- and user-oriented descriptions of options are a
close match for program structures. Prior work has made
similar observations about object oriented design patterns.
Reverse-engineering design patterns from program code has
been an active area of research since at least 1996. This
work sought to report pattern use as a form of design doc-
umentation [15, 7].

Like this prior work, we are trying to use program anal-
ysis to remedy deficiencies in documentation. Unlike this
prior work, we are deriving a comparatively high-level and
informal property. Return codes and exceptions are aspects
of program behavior that can be directly expressed in the
semantics of the associated programming language, as can
many object-oriented design patterns. Configuration is a
library-defined abstraction; configuration option types are
an ad-hoc human concept.

Another branch of related work concerns configuration-
aware program analysis. Reisner et al. have used symbolic
execution to model configurable programs [24]. They show
that configuration options often localized effects: most op-
tions only affect a small portion of program state. This re-
sult is in accord with our findings. We observed that option
use falls into patterns; most of the configuration patterns we
saw are likely to have localized effects.

Some prior work would benefit from the results of our
analysis. The ever-increasing complexity of software has
made configuration debugging an important topic. The Au-
toBash and Triage systems attempt to diagnose failures by
repeatedly applying potential fixes and testing them using
speculative execution [30, 31]. Knowing which options a
program can read and how those values are used may help
determine which potential fixes are most promising, thus
reducing the time taken to diagnose an error. More pre-
cise information about program option use (including option
types) may enable automatic generation of potential fixes.

7. CONCLUSION
All of the programs we examined had documentation for

options that were not actually present. This appeared to be
the result of error, not design. The programs we looked at
also contained undocumented options. Some undocumented
options appear to be intended only for unit test writers.
Others might be useful to users, particularly users with atyp-
ical needs. As a result, the lack of documentation is a prob-
lem worth correcting.

Several conclusions emerge from our work.
Open-source programs are rife with stale docu-

mentation for configuration. Many real options are un-
documented, and not all documented options exist.

Configuration option names are available statically.
Our static analysis was able to find the overwhelming ma-
jority (more than 95%) of options in the programs we looked
at. This is more complete than existing manually-produced
documentation.

String analysis and external dependencies pose the
biggest challenges to static analysis of configurabil-
ity. Points-to and call graph imprecision was not the biggest

challenge for our analysis. The chief limitations we found
were two-fold. Values are sometimes stored inside strings,
frustrating simple data-flow analysis. Some options are passed
to external programs before being used. This frustrates
single-program analysis.

Option behavior can often be described and doc-
umented automatically. For some types of options, such
as class names and Booleans, analysis can find a high pro-
portion of options, without any observed no false positives.
For options drawn from small sets of strings, analysis can
often also give the set of legal values. Beyond documenta-
tion, this offers the possibility of catching a range of user
configuration mistakes, via a “spell check for configuration”.

Acknowledgements
We thank Koushik Sen and David Wagner for offering ad-
vice and encouragement and thank Mayur Naik for extensive
support in using JChord. We thank the anonymous review-
ers for their input. This research was supported by Califor-
nia MICRO, California Discovery and the following Berkeley
RAD Lab sponsors: Sun Microsystems, Google, Microsoft,
Amazon, Cisco, Cloudera, eBay, Facebook, Fujitsu, HP, In-
tel, NetApp, SAP, VMware, and Yahoo!.

8. REFERENCES
[1] Apache Derby. http://db.apache.org/derby/.

[2] HBase. http://hbase.apache.org/.

[3] R. P. Buse and W. R. Weimer. Automatic
documentation inference for exceptions. In ISSTA,
New York, NY, USA, 2008.

[4] A. Christensen, A. Møller, and M. Schwartzbach.
Precise Analysis of String Expressions. In Symposium
on Static Analysis, 2003.

[5] A. Diwan, K. S. McKinley, and J. E. B. Moss.
Type-based alias analysis. SIGPLAN Notices, 33(5),
1998.

[6] K.-G. Doh, H. Kim, and D. A. Schmidt. Abstract
parsing: Static analysis of dynamically generated
string output using lr-parsing technology. In
Symposium on Static Analysis, 2009.

[7] J. Dong, Y. Zhao, and T. Peng. Architecture and
design pattern discovery techniques-a review. In
International Conference on Software Engineering
Research and Practice (SERP), 2007.

[8] S. Duan, V. Thummala, and S. Babu. Tuning database
configuration parameters with iTuned. VLDB, 2009.

[9] Hadoop. http://hadoop.apache.org/.

[10] R. Hasti and S. Horwitz. Using static single
assignment form to improve flow-insensitive pointer
analysis. In PLDI, 1998.

[11] D. Hettena and R. Cox. A guide to nachos 5.0j.
http://inst.eecs.berkeley.edu/~cs162/sp07/

Nachos/walk/walk.html.

[12] D. Hovemeyer and W. Pugh. Finding bugs is easy.
ACM SIGPLAN Notices, 39(12):106, 2004.

[13] L. Keller, P. Upadhyaya, and G. Candea. ConfErr: A
tool for assessing resilience to human configuration
errors. In DSN, 2008.

[14] C. Kirkegaard and A. Møller. Static analysis for Java
Servlets and JSP. In Symposium on Static Analysis,
2006.

[15] C. Kramer and L. Prechelt. Design recovery by
automated search for structural design patterns in
object-oriented software. In Working Conference on
Reverse Engineering, 1996.

[16] T. Kremenek, P. Twohey, G. Back, A. Ng, and
D. Engler. From uncertainty to belief: inferring the
specification within. In OSDI, 2006.

[17] A. Lakshman, P. Malik, and K. Ranganathan.
Cassandra: A Structured Storage System on a P2P
Network. In SIGMOD, 2008.

[18] T. Lethbridge, J. Singer, and A. Forward. How
software engineers use documentation: The state of
the practice. IEEE software, pages 35–39, 2003.

[19] M. Levesque. Fundamental issues with open source
software development. First Monday:, Special Issue
#2: Open Source, October 2005.

[20] J. Lim, T. Reps, and B. Liblit. Extracting output
formats from executables. In Working Conference on
Reverse Engineering, 2006.

[21] B. Livshits, J. Whaley, and M. Lam. Reflection
analysis for Java. In Third Asian Symposium on
Programming Languages and Systems, 2005.

[22] M. Michlmayr, F. Hunt, and D. Probert. Quality
practices and problems in free software projects. In
Proceedings of the First International Conference on
Open Source Systems, 2005.

[23] M. Naik. JChord. http://jchord.googlecode.com.

[24] E. Reisner, C. Song, K. Ma, J. Foster, and A. Porter.
Using symbolic evaluation to understand behavior in
configurable software systems. In ICSE, 2010.

[25] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems. In Middleware, 2001.

[26] C. Rubio-González and B. Liblit. Expect the
unexpected: error code mismatches between
documentation and the real world. In PASTE, 2010.

[27] J. Sawin and A. Rountev. Improving static resolution
of dynamic class loading in java using dynamically
gathered environment information. In Automated
Software Engineering, 2009.

[28] D. Schreck, V. Dallmeier, and T. Zimmermann. How
documentation evolves over time. In IWPSE ’07:
Ninth international workshop on Principles of software
evolution, 2007.

[29] J. Singer. Practices of software maintenance. In
Proceedings of the International Conference on
Software Maintenance, 1999.

[30] Y.-Y. Su, M. Attariyan, and J. Flinn. Autobash:
improving configuration management with operating
system causality analysis. In SOSP, 2007.

[31] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou.
Triage: diagnosing production run failures at the
user’s site. In SOSP, 2007.

[32] R. Wang, X. Wang, K. Zhang, and Z. Li. Towards
automatic reverse engineering of software security
configurations. In CCS, 2008.

