Precomputing Possible Configuration Error
Diagnoses

Ariel Rabkin and Randy Katz
EECS Department, UC Berkeley
Berkeley, California, USA
{asrabkin,randy } @cs.berkeley.edu

Abstract—Complex software packages, particularly systems
software, often require substantial customization before being
used. Small mistakes in configuration can lead to hard-to-
diagnose error messages. We demonstrate how to build a map
from each program point to the options that might cause an error
at that point. This can aid users in troubleshooting these errors
without any need to install or use additional tools. Our approach
relies on static dataflow analysis, meaning all the analysis is done
in advance. We evaluate our work in detail on two substantial
systems, Hadoop and the JChord program analysis toolkit, using
failure injection and also by using log messages as a source of
labeled program points. When logs and stack traces are available,
they can be incorporated into the analysis. This reduces the
number of false positives by nearly a factor of four for Hadoop,
at the cost of approximately one minute’s work per unique query.

I. INTRODUCTION

Studies have shown that human administrators almost in-
evitably make mistakes, even when given explicit step-by-
step directions [1]. Given an unfamiliar program, errors and
fumbling are inevitable. For widely-used programs, web search
can bring up user reports of problems and solutions. But con-
figuration debugging is still a thorny problem for specialized
open-source programs. Projects can accumulate configuration
options that were useful for solving some particular problem
at a particular site at some point in time. Without centralized
management, documentation can be sparse, out of date, or
simply wrong [2]. As a result, the set of configuration options
can be large and incompletely documented [3], [4]. Human
support may not be readily available. Developer time is a
limited resource, and inspecting and diagnosing error messages
displayed when users misconfigure software is a low priority.

Consider Hadoop, a widely used open source filesystem
and MapReduce implementation. It is a well-established open
source project, with dozens of active developers and ample
documentation, including several books. Users range from
large software companies with dedicated administration teams
to hobbyists attempting to configure a small cluster at home.
Despite this maturity, configuration error checking is still
weak. If a user attempts to launch a recent version (0.20.2)
of the Hadoop Filesystem with the default out-of-the-box
configuration, it will crash with a null pointer exception,
affording users little guidance about what to fix. We will use
this as a running example.

This paper describes a technique that can help users trou-
bleshoot this sort of startup error. When a user faces an unhelp-

ful error message, such as Hadoop’s “NullPointerException at
line 134 of NetUltils.java”, our approach points them to a con-
figuration option that, if changed, will make the error go away.
Our goals are to give users an answer as quickly as possible,
without users installing any new debugging or analysis tools,
without them having to understand the program’s source code
and without exposing sensitive site-specific configuration.

Yin et al. have studied configuration errors in five significant
applications; they found that mistaken parameter values are
70-85% of all misconfigurations, and that invalid values, of
the sort our technique could potentially address, are 40-50%
of these [5]. Brown et al. suggest that typos are omnipresent
and are a major problem [1]. Hence, looking for a specific
“wrong” option will catch a large fraction of real-world
misconfigurations.

Our chief tool is static analysis, which can be done indepen-
dent of the user’s query and whose results can be shared across
users. Most prior work on configuration debugging has relied
on large user communities or on modifying the program’s exe-
cution environment. Both of these are deployment challenges.
In contrast, our approach lets developers shield users from the
complexity of diagnosis.

A. Our Contributions

The core of our approach is to analyze the program in
question, producing a table mapping each line in the program’s
source code to the set of relevant configuration dependencies
at that point. We envision this being done by the developers
at release time. When a user encounters an error, they can
use the error message to query this table, perhaps via a web
service. Previous work has shown how to map log messages
back to the origin line in the source code [6], [7]. Our
approach requires no reconfiguration, new tools, or program
modifications on the part of the user, unlike replay-based
approaches or delta debugging. It requires no alterations to
the JVM or standard library. This distinguishes our work from
competing techniques such as dynamic taint tracking.

In managed environments such as the Java runtime, un-
handled errors often result in a stack trace. We show that these
stack traces can significantly improve the precision of analysis.
Our technique, which we call failure-context-sensitive analysis
(FCS), re-analyzes the call chain corresponding to the stack
trace, pruning out irrelevant paths. By reusing the results from
a prior static analysis, the run time for FCS can be kept

low. For Hadoop, the cost of these queries is approximately a
minute with our current implementation. The results of these
queries can of course be cached, reducing the time to answer
for subsequent queries with the same stack trace. Our vision is
that this analysis would be performed by a web service; users
would need only to paste in a stack trace or log file to get
back a diagnosis.

We have a prototype implementation targeting Java byte-
code programs. We use the JChord analysis toolkit [8]. All
the code used for the measurements in this paper is publicly
available in the JChord source code repository'. We chose
JChord because it was relatively easy for us to understand
and modify its source code, and because its datalog-heavy
programming style facilitated rapid prototyping. This was
purely an implementation choice. Other dataflow or slicing
engines should work comparably well. More broadly, we do
not claim that our analysis algorithms are the best possible,
rather, we show they are effective enough to be of use in
solving an important practical problem, while still running
quickly on large programs.

In previous work, we described how static analysis can find
and categorize configuration options in many programs [4].
The analysis presented here is similar in spirit, and uses
the techniques presented there for a preliminary part of the
analysis. Explaining errors, however, requires a substantially
more complex analysis than merely finding types. None of the
techniques described here were present in our prior work.

B. Methodology and Organization

Our analysis is targeted to large complex software systems,
such as Hadoop. In these systems, data will flow in and out of
the system via the network and the filesystem. There may be
native-language code. These data flows are difficult to capture
dynamically, and even harder to model statically. As a result,
we accept that our analysis will be imprecise and will miss
some configuration dependencies. There will be both false
positives and false negatives. We believe this is acceptable,
so long as the analysis performs well in the common case,
giving a correct diagnosis and not too many wrong guesses.

While our focus is on static analysis, we evaluate the
benefits from several kinds of run-time instrumentation. This
lets us gauge the sources of imprecision in our static approach.
We show that tracking which options are read by the program
can substantially improve analysis precision. This information
can be recorded by the program and incorporated into the
analysis cheaply. Only normal logging is required, not any
sort of dynamic tracing or taint tracking.

The rest of this paper is organized as follows. We begin
by describing our model for configuration options and give an
overview of the analysis techniques we propose. In Section
III, we present the details of our analyses. Our evaluation is
in Section IV. Section V discusses limitations and sources of
experimental error. Section VI describes related work. We give
our conclusions in Section VII.

Ihttp://code.google.com/p/jchord/source/browse/trunk/conf_analyzer

NetUtils.java:

SocketAddress getNameNodeAddress () {
60: return createSAddr (

getDefaultUri () .getAuthority());
}

URI getDefaultUri () {

100: return Conf.get ("fs.default.name",
"file:///™));

}

133: SocketAddress createSAddr (String t) {

134: int colonIndex = t.indexOf(’:");

135:

Fig. 1. Simplified Hadoop code that produces null pointer exception with

default configuration.

NetUtils.java 60 depends on fs.default.name
NetUtils.java 134 depends on fs.default.name

Fig. 2. Analysis output for code in Figure 1. Note that reading a variable,
as on line 60, is not a use of the variable.

II. MODEL AND OVERVIEW

We model configurations as a set of key-value pairs, where
the keys are strings and the values have arbitrary type. This is a
convenient abstraction for analysis as well as a close match for
many standard configuration APIs. It is the abstraction offered
by the POSIX system environment, the Java Properties API,
and the Windows registry. It is also used by many applications
for their own configuration data. It is not the only configuration
model in use. Some systems use structured XML formats or
other more complex models. At least sometimes, though, these
more complex models can be approximated by treating an
XPath to the option as its name. In previous work, we attained
high accuracy using this XPath-based reasoning for Cassandra,
which uses structured XML for configuration [4].

A. An Example

This section gives an example of how our analysis can diag-
nose a configuration error. We continue our running example:
Hadoop, when started with default configuration, prints “Null-
PointerException at line 134 of NetUtils.java”. Figure 1 is a
simplified version of the code in question. The problem arises
as follows. The getNameNodeAddress method attempts
to construct an address from the authority (server) portion of
the filesystem URI. The default filesystem URI (controlled
by option fs.default.name) is file:///. This URI
has no authority portion and so URI.getAuthority ()
returns null. This null then propagates to createSAddr (),
which attempts to dereference it and then crashes. In the real
implementation, this code is scattered across three different
classes. Tracking down the problem in the source code would
be a substantial task, particularly for new users.

Our approach builds a table mapping each line in the
program to the options most directly associated with it. In this
case, there will be an entry saying that fs.default .name
affects line 134 of NetUtils.java. This table can then be pre-
sented to users via a web service (or a general-purpose search
engine), letting them discover that f£s.default.name is a
relevant option at the point where the exception was raised.
Our analysis does not tell users what value for the option will
resolve the problem, but it can avoid wasted time tinkering
with irrelevant options.

Before describing our analysis in detail, we give a sketch
of how our analysis ties together the option and the relevant
source code line. This is intended to give the overall flavor of
the approach. The analysis marks the call to Conf.get () as
an option read. Its return value is therefore assigned the label
fs.default.name. Dataflow analysis tracks the flow of
this label into createSAddr (). Line 134 of NetUtils.java
uses this value, and so the analysis outputs that the line in
question depends on fs.default.name. Figure 2 depicts
this. Note that reading a configuration option, as happens on
line 100, is not a use of the option.

B. Overview of Approach

The next section will discuss our analysis algorithms in
detail. Here, we give an overview of the approach. We define
a label for each configuration option. We then use dataflow
analysis to determine which values and program points are
associated with each label. This analysis happens at the
bytecode level. At the end, we map these results back to
line numbers. Since the analysis is being done at development
time, we assume that debugging information is available to
supply the line numbering. These error-attribution maps are
small enough to easily fit in memory, even for large programs,
as discussed in Section IV-C.

The steps in our analysis are listed below. The first step is
a standard points-to analysis. The second step is shared with
our previous work [4]. The next three steps are responsible for
mapping program points to data dependencies. Last, we do a
method-local control-flow analysis. Below is an outline of the
approach:

1) Points-to analysis and call-graph construction.

2) Find configuration read points and associated names.

3) Create flow summaries for all reachable methods.

4) Dataflow analysis of configuration labels.

5) Optional: Demand-driven Failure-context-sensitive
dataflow analysis of failure path using stack trace.

6) Method-local control-flow analysis using results of
either whole-program or failure-context-sensitive
dataflow analysis.

The basic analysis can all be computed statically and shared
across all errors to be diagnosed. Only the (optional) failure-
context-sensitive analysis needs to be repeated for each distinct
error message.

Our approach is similar to taint tracking in that we are
concerned with tracking the flow of labels through a program.

Labels are introduced via configuration reads, and propagate
via assignment and via library calls. Unlike taint tracking,
we are not trying to find all possible dependencies, but only
the most relevant ones for troubleshooting. To avoid the well-
known problem of taint explosion [9], we apply a number of
heuristics, discussed below. Our analysis can also be thought
of as an application of thin slicing [10]. We are effectively
computing a forward (thin) slice from each configuration
option read point, and recording the set of slices that each
program point belongs to.

Several design choices were forced on us by the programs
we sought to analyze. We cannot assume that analysis will find
an allocation site for every object. The programs we analyze
are large, complex frameworks. Objects can be allocated in
native code or in user code not present at analysis time. Hence,
we apply labels to variables and to fields of objects, not
to allocation sites. (This is similar to the approach taken in
RacerX [11].) Second, we do not analyze inside the standard
library. Instead, we treat library methods as opaque and treat
references to library-defined types as primitives. These two
aspects are complementary. Treating the library as opaque
means that there will not be an allocation site associated with
references returned by library methods. Hence, it makes sense
to label the references themselves.

III. IMPLEMENTATION

This section describes our analysis in more detail, focusing
on distinctive or unusual aspects. Readers seeking more infor-
mation are referred to our implementation, which is publicly
available. We first describe our core static analysis, followed
by our failure-context-sensitive technique and the dynamic
analyses we used to evaluate sources of imprecision.

A. Static Analysis

Points-To: We used the k-object-sensitive points-to anal-
ysis [12] built into JChord (with & = 2). The analysis is
field-sensitive, path insensitive, and flow insensitive. It uses
the static single assignment form of the program to gain
some of the benefit of flow sensitivity (as suggested by Hasti
and Horwitz [13]). We handle reflection using the technique
presented in [14].

Many of the programs we analyzed make significant use
of remote proceedure calls (RPCs). Labelled values should
flow from the initialization code, invoked from main, to RPC
methods, invoked remotely. This requires that the same ab-
stract object be used in each context. To incorporate remotely-
invoked methods into our points-to analysis, we automatically
generate Java stubs that call each remotely accessible method
of a server object. We then hand-wrote a few more lines of
Java to ensure that these remote methods were invoked on the
server object created by main.

Finding Configuration: We find configuration options
using the approach described in our previous work [4]. Each
of the applications we examined used a handful of “configura-
tion” classes (often with that name) responsible for reading a
configuration file and exposing a key-value interface to the rest

of the program. We manually construct a list of “configuration
methods”, including both API methods like getenv and
their application-defined equivalents. For the programs in our
study, this required a handful of per-application definitions.
This list also records which argument corresponds to the
option name. Configuration is typically spread across several
domains: an environment variable named someOpt ion may
have no connection to a JVM property of the same name.
To remove this ambiguity, we associate each configuration
method with the name of the relevant domain.

At each call site that reaches one of these methods, a string
analysis determines the name of the option being read, or
“Unknown” if the analysis cannot find it. We used a custom-
written string analysis that integrated easily with our points-
to analysis. In prior work we showed that this technique
finds options with over 95% accuracy on large complex
programs, including the ones analyzed in this paper, making
a more sophisticated string analysis unnecessary for us. More
sophisticated string analyses (such as JSA [15]) could be used
without changing our overall approach to finding configuration
read points.

Dataflow: As noted above, we use an object-sensitive
dataflow analysis. This decreased false positives by 40% com-
pared to context-insensitive analysis. Beyond this, we found
that our results were not extremely sensitive to the details of
the analysis. We briefly summarize the implementation choices
we made, but due to space limitations, we do not give detailed
comparisons.

We mark a method’s return value as depending on an
argument if there is a control-dependency between the return
statement and the argument. This rule is not strictly necessary;
adding it increased coverage slightly (two additional true
dependencies caught) while decreasing precision by approxi-
mately 10%.

If two variables may be aliased locally, we propagate labels
from one to the other. Likewise, if a local variable aliases
a static or instance field, and that variable becomes tainted
via a library call, we taint the field. In the interests of
precision and run-time performance, we do not model arbitrary
interprocedural aliasing. One of the reasons this works is that
most important Java library-defined types (including files and
strings) are immutable. Even if an object is aliased, labels
cannot flow between contexts; all the labels for an immutable
object must appear in the context where the object is created.
(This is not simply a happy accident. One reason why the
Java designers preferred immutable types was because they
are easier to reason about [16].)

Summarization: We use a summary-based context-
sensitive analysis to gain additional precision. The approach is
based on that described by Reps et al. [17]. When a label can
flow from a method argument to its return value without going
through the heap, we mark the method as having a functional
dependence on the argument. Then, on the caller side, we
use this summary to model the behavior of the function with
respect to its arguments. These summaries handle dataflow
paths that go purely through local variables. We also do a

standard whole-program dataflow analysis, including the heap,
covering all other paths.

The primary benefit of the summarization is that it simplifies
our failure-context-sensitive analysis. It has two other benefits
as well. It makes our dataflow more precise, leading to a 25%
reduction in false positives for our test programs. It also makes
the analysis faster: analysis times for the component programs
of Hadoop went from an average of 10 minutes to an average
of less than five.

Library Modeling: We adopt an approximate and pes-
simistic model for library code. We were driven to this model
by the need to accommodate native code. We then found that
it was practical to use for all library code, reducing the size
of the code that needs to be analyzed and gaining the effect
of an extra level of context-sensitivity for library calls.

We apply this model to the Java run-time libraries as well as
to libraries used by the applications in our study. As a special
case, we mark the Path types in Ant and Hadoop as library
code. These types are returned by configuration-read methods
and we need to treat them as opaque to maintain our invariant
that labels apply only to primitive types and to references to
library types.

We assume that if a parameter to an API call depends on
a configuration option, then the object on which it is invoked
and the return value both also depend on that option. As a
special case, we do not mark input or output stream objects
as depending on the data being written or read. We distinguish
a handful of methods such as equals, where the arguments
influence the return value but do not alter the object on which
they are invoked.

Collection classes (such as arrays, hash tables, and so on)
are mutable, and so our naive library model was inappropriate
here. Our response was to use a simplified model implementa-
tion in Java. (Simply analyzing the library directly would not
have captured the implicit dependency between the argument
to get and its return value.)

Control-Dependence: We follow our dataflow analysis
with a static and method-local control-flow analysis. Our
primary concern was to capture the common programming
idiom of checking a value and then emitting an error message
if something is amiss. The analysis marks a program point
as depending on an option if that point is on one side of a
branch, where the branch condition has a data dependence
on the option. Previous work on thin slicing has demonstrated
that this sort of method-local analysis is likely to capture most
relevant control dependencies while including few extraneous
ones [10]. We have explored alternative slicing approaches
that included additional implicit flows; these caused only small
changes to our results.

The final output at each program point is the union of
control and data dependencies at that point.

B. Failure-Context-Sensitive Analysis

Failure-context-sensitive analysis (FCS) is our technique for
using stack traces to refine the precision of our error diagnosis.
Our functional-dependence model (introduced in the previous

section) separates the effects of formal arguments and those
of the heap or configuration read calls. As a result, we can
re-analyze the failure path using only the labels for formal
arguments propagated down the failing call path but using our
full model for the heap. We compute the failure path by finding
the program points that correspond to method calls in the stack
trace supplied by the user. If a stack trace does not include a
complete path from main to the failure point, we use the static
analysis results to label the arguments to the lowest method
on the stack trace.

Returning to our running example, the failing method,
createSocketAddr, is called in many places in the code,
with many different configuration options. Hence, knowing
the options associated with the line where the exception is
thrown is not very helpful. Even knowing the immediate caller
is insufficient. The example code in Figure 1 above is slightly
simplified. In fact, the failing function is generally called via
a wrapper that specifies a default port number. Hence, several
stack frames would be needed to disambiguate which option
is responsible. (Different call paths require different levels of
context to get a precise diagnosis.)

Unlike typical context-sensitive analysis algorithms, FCS
works well on deep stack traces. This makes it well adapted to
the common pattern of having several related utility methods
that call one another with slightly different argument lists, such
as with default values. In our experiments, this extra “deep”
context made a major difference to results. Simply picking
the calling context defined by the stack trace did not give
comparable precision.

C. Dynamic Approaches

The static analysis above has several sources of imprecision.
To gauge their importance, we replaced portions of our static
analysis with instrumentation-based dynamic analysis.

The value of a configuration option that is never read cannot
affect the program. Our first dynamic approach, instrumented
configuration reads, records which options are read and where.
This is then consumed by the static analysis discussed above.
Effectively, this is static analysis using only the options
actually read by the program.

Our second dynamic approach, instrumented configuration
flow, goes farther. In addition to dynamically monitoring
option reads, we track the flow of labelled objects through the
program dynamically. When a configuration value is returned
by a method, that value and the associated option name are
recorded in a lookup table. This table is kept in the memory of
the instrumented process. At each new invocation, the options
associated with each parameter are written to disk. Unlike
our static analysis, this approach tracks objects, not values.
We augment the dynamic tracking with a method-local static
analysis to track primitive types and the flow of values that
were null at run-time. We reuse our static control-dependence
analysis.

Instrumented configuration flow was intended purely to
measure sources of imprecision. In contrast, instrumented con-
figuration reads could be incorporated into existing systems.

TABLE I
RESULTS USING CONFERR FOR FAULT INJECTION: COVERAGE IS HIGH
AND FALSE POSITIVES ARE LOW.

Target Errors | Avg False | False | Success

Injected Positives | Neg. rate

Hadoop HDFS 5 1.0 1 80 %
Hadoop MapRed 6 3.5 1 83 %
JChord 7 2.1 1 85 %

In the programs we have seen, configuration data is accessed
exclusively via a handful of program classes. The value of each
option could be logged the first time it is read. The volume
of information would be small and proportional to the number
of configuration options. This information could be extracted
from log files during troubleshooting and used to filter the
static analysis results. This logging would also compensate for
imprecision in finding option names by making the concrete
run-time names available.

IV. EVALUATION

In this section, we evaluate the static analysis approaches we
presented above. We seek to answer several research questions:
How complete and correct are the results of the analysis? What
are the sources of imprecision? How much gain is there from
failure-context-sensitive analysis?

We performed two different sets of experiments. First,
we performed a fault injection study using two programs,
Hadoop and JChord. This experiment measures how well
our static analysis works, how much gain there is from
failure-context-sensitive analysis, and how much different sorts
of dynamically-collected information improve precision. Our
second set of experiments controls for selection bias in the
injected faults and the programs we investigated. We mea-
sured the statistical properties of our analysis on a range of
additional programs and program points. We demonstrate that
the programs and program points evaluated in the first set are
not anomalous, evidence that our technique is more broadly
applicable.

A. Catching Injected Configuration Errors

Our fault injection experiments focused on two software
systems, Hadoop and JChord. The Hadoop source code con-
sists of several hundred thousand lines of Java, and over 20
library dependencies. Its functionality is split across several
separate but communicating programs. It makes heavy use
of reflection, making it a suitably “hard target” for program
analysis. JChord is a program analysis tool and deadlock
detector. It has five developers, approximately 30,000 lines
of Java source code and a dozen library dependencies. It too
makes heavy use of reflection. Both programs support several
dozen options.

We used the ConfErr tool [18] to insert typographic errors
into otherwise-working configurations for each of JChord,
Hadoop MapReduce, and Hadoop’s HDFS filesystem. Some
typographic errors are masked silently by the program. Each
of the remaining erroneous configurations led to either an error

message or a stack trace. If there was an error message, we
check for dependencies at the line where the message was
printed. For stack traces, we use the first point on the trace with
a dependence. (This rule covers cases where an exception is
raised inside unanalyzed library code.) We analyze the results
with our basic static analysis.

Our results are displayed in Table I. ConfErr found 18
errors across the three systems under test. Of these, our tool
diagnosed all but three, a 17% false negative rate. (The false
negative rate is the fraction of errors for which our algorithm
did not find the true injected root cause.) Once each for
Hadoop MapReduce and HDFS, an injected string broke the
XML format of the configuration file. This caused an error at
configuration read time. Our tool was unable to diagnose these
errors, because they were not tied to any particular option.
The un-diagnosed JChord error was caused because the bad
value was used to set up the command line for a child process;
our analysis does not capture dependencies between command
line arguments and configuration options. We compute the
false positive rate by counting the number of configuration
dependencies other than the one with the injected error. This
averaged between 1 and 3.5 for the systems in question. (The
ideal is 0, meaning exactly one diagnosis for every error.) Our
technique thus succeeds in drawing attention to a handful of
possible problem diagnoses.

Next, we examine precision more closely by comparing
five different analysis techniques: static analysis, the two
dynamic approaches discussed above, failure-context-sensitive
static analysis, and failure-context-sensitive analysis using
only options read at runtime. For errors without stack traces,
FCS is equivalent to static analysis. We mark these cases with
an X in our data tables and reuse the result of the static
analysis. All our techniques had the same false negative rates,
so average false positives is the relevant figure of merit.

We felt that the errors found by automated fault injection
were not necessarily representative of the full range of user
mistakes. Errors such as an unavailable port number for a
server or insufficient disk space show up in operation but
not in automated testing. For Hadoop, we found a number
of mailing list messages with errors, configuration, and a
confirmed diagnosis. We incorporated those into our test inputs
to provide a wider range of test cases. They are marked with
asterisks in Table II. For JChord, we reused the errors found
by automated testing. Our results are presented in Tables II
for Hadoop and III for JChord.

For both Hadoop and JChord, the biggest precision gain
came from dynamically recording which options are read (the
instrumented reads approach). Dynamically tracking values
(instrumented flow) adds additional benefit. The gap between
instrumented reads and instrumented flow is a measure of
how much imprecision comes from our dataflow and points-to
analyses. As can be seen, there is a gap, but a comparatively
smaller one.

For Hadoop, in the cases where static analysis finds many
possible options, failure-context-sensitivity improves precision
substantially, reducing the average number of guesses by ap-

proximately a third. Failure-context-sensitivity plus restricting
to options read at runtime reduced false positives by nearly a
factor of four, as compared to pure static analysis. For JChord,
FCS was ineffective; JChord errors largely lacked stack traces,
and so the technique does not apply.

A few aspects of our measurements require explanation.
Hadoop Test 3 is a real user-reported error that manifests in a
subprocess spawned by the Hadoop TaskTracker process. As
mentioned, our analysis does not track this type of dependency.
Instrumentation-based approaches can sometimes find more
options than were found statically. Our static analysis com-
bines related option names. At run-time, £s.hdfs.impl and
fs.file.impl are distinct, but our static analysis treats the
two as one option, fs..x.impl. Tracking objects can also
introduce spurious option dependencies not found statically;
we observed this in our fourth JChord test case.

We also tried a simple heuristic, last-option-read. This
heuristic looks at the last configuration option that a program
read before failing, but does not examine the program structure
in any way. We had expected this to work because many
wrongly-set options will result in errors on first use, if they will
result in errors at any point. Experimentally, we see that this
heuristic works half the time for Hadoop: Hadoop often reads
options immediately before using them; if the first use of an
option value triggers an exception, then that option was likely
the most recent one read. The heuristic does not work at all for
JChord. JChord reads most of its options at program startup,
so there is no close connection between reads and uses. We
conclude that this heuristic relies entirely on particular styles
of programming for its effectiveness.

B. Measurements From Other Programs

In the previous section, we only looked at configuration
errors in two software systems, Hadoop and JChord. To
estimate how well our approach would work on other errors
and other programs, we compare aggregate statistics from
these two programs to those from several others.

The programs we analyze span a range of applications and
have a wide variety of developers. Apache Ant is a replace-
ment for Make, originally developed at Sun Microsystems as
a component of the Tomcat servlet container’. HBase is a
re-implementation of Google’s BigTable storage architecture
developed by a loose collection of open-source developers
spread across several companies®. Cassandra is a distributed
storage service developed at Facebook [19]. FreePastry is
a peer-to-peer distributed hash table originally developed at
Rice [20]. Hence, these programs represent a range of pro-
grammer expertise and style.

To estimate precision, we look at the average number of
exceptions at method call points. (Non-method call statements
cannot print error messages and can only raise exceptions in
a few circumstances.) We display our results in Table IV.
We separately display the average number of dependencies
at points with at least one.

Zhttp://ant.apache.org/
3http://hbase.apache.org/

TABLE II
DETAILED RESULTS FOR HADOOP. SHOWS COUNT OF FALSE POSITIVES. "N” = TECHNIQUE FAILED. ”X” = INAPPLICABLE (NO STACK TRACE).

AVERAGE

FALSE POSITIVES FOR EACH TECHNIQUE IS KEY FIGURE OF MERIT.

Run | Program Error Static | Dynamically-measured FCS Last
ID Reads Flow + Dyn. Reads | Load
1 | TaskTracker | rpc socket factory class not a class 0 0 0 X0 X0 Y
2 | TaskTracker | master hostname not set 7 0 0 6 0 Y
* 3 | TaskTracker | child work dir not writable N O N O NO| NO N O N
*4 | NameNode storage dir not writable 3 1 0 3 1 N
5 | NameNode fs.default.name not this machine 0 0 0 0 0 N
* 6 | NameNode fs.default.name not HDFS 5 0 0 0 0 Y
7 | NameNode Data port unavailable 1 1 0 1 1 N
8 | NameNode Info. port in use 2 2 0 2 2 N
9 | NameNode invalid topology mapping class 0 0 0 0 0 Y
10 | NameNode topology mapping script not valid 4 4 1 4 3 N
11 | NameNode FS object quota exceeded 0 0 0 0 0 N
12 | NameNode malformed XML N O N O NO| X0 X0 N
13 | JobTracker jobtracker info port in use 2 2 0 2 2 N
14 | JobTracker storage dir not writable 8 3 1 8 2 N
*15 | JobTracker master hostname not set 1 0 0 0 0 Y
16 | JobTracker log dir not set 0 0 0| X0 X0 Y
* 17 | JobTracker carriage return at end of address 1 0 0 0 0 Y
18 | JobTracker malformed XML NO N O NO | X0 X0 N
19 | DataNode missing DN port number 8 3 1 7 2 Y
20 | DataNode use of deprecated option 0 0 0| X0 X0 Y
* 21 | DataNode master host not specified 8 0 0 0 0 Y
22 | DataNode storage dir not writable 0 0 0| X0 X0 Y
Success % 86.4 86.4 86.4 | 86.4 86.4 50
Average False Pos 2.3 0.7 0.1 1.5 0.6
TABLE III
DETAILED RESULTS FOR JCHORD.

Run | Program | Error Static | Dynamically-measured FCS Last

ID Reads Flow + Dyn. Reads | Load

1 | JChord no main class 1 1 0 1 1 N

2 | JChord no main method 0 0 0] X0 X0 N

3 | JChord no such analysis 3 0 0| X3 X0 N

4 | JChord invalid context-sensitive analysis name 1 1 2 1 1 N

5 | JChord printing nonexistent relation 0 0 0 0 0 N

6 | JChord disassembling nonexistent class 0 0 0| X0 X0 N

7 | JChord invalid scope kind 4 2 0| X4 X2 N

8 | JChord invalid reflection kind 4 2 2| X4 X2 N

9 | JChord wrong classpath N2 N2 N1 | X2 X2 N

Success % 88.9 88.9 88.9 | 88.9 88.9 0

Average False Pos 1.7 0.9 0.6 1.7 0.9

Most program points have no configuration dependency. Of
points with a dependency, the average number at any point is
less than eight for all the programs in our sample, and less
than six for all but two programs. As can be seen, Hadoop
and JChord (the programs examined in detail above) are not
radically different from the other programs we examine here.
This suggests that our failure injection results are generalizable
to other programs. Moreover, the average number of depen-
dencies per program point found here is similar to the average
number of false positives measured in the failure injection
experiments.

This further validates our methodology. It shows that the
program points at which errors arose in the experiments above
are comparable to the average for each program as a whole.
(Note the average number of false positives is lower than

the average number of dependencies: one option is actually
responsible for a given error in our tests.)

In some programs, log messages explicitly mention config-
uration options. Programmers may print the value of an option
alongside its name or produce error messages with option
names. These messages are effectively labelled data, and give
us an additional avenue for estimating the false negative rate
for our analysis: find messages that mention options, and check
whether the analysis finds a dependency between that message
and the named option. The results of this analysis are also
displayed in Table IV. All but a handful of these “explicit
dependencies” are detected by our technique. We saw two
causes for false negatives. First, our analysis does not track
control flow via exceptions. Second, some messages mention
an option that does not actually influence the message, such

as “option X is deprecated, use Y instead.” This latter case is
a limitation of our evaluation technique, not of the underlying
program analysis.

C. Performance Aspects

We next consider the running time and output size of our
analysis. Time costs for all the programs we studied are
displayed in Table IV. Measurements were conducted on a
modern dual-core laptop with 4 GB of RAM. The largest
program and longest-running analysis was Ant, which took
just under half an hour. Most others were under 10 minutes.
This is acceptable as part of a nightly build process.

Our prototype outputs flat, uncompressed, text, with one
line for each (line,option) dependency pair. (Table 2 gives an
example of this.) Each entry is approximately 150 bytes of
uncompressed ASCII. Even with this space-inefficient format,
the largest table we have seen, for Ant, is 3MB. This can be
kept in memory and searched very quickly, taking less than
a second. A more space-efficient output format could reduce
space and time cost substantially.

Unlike our base static analysis, failure-context-sensitive
analysis has a measurable run-time per error. For Hadoop, the
average FCS run time was approximately a minute; or roughly
a quarter of the static analysis time. For JChord, FCS took
approximately 30 seconds, again a quarter of static analysis
time. This shows that most of the analysis can be shared across
runs. While we did not optimize aggressively for performance,
it is already good enough for some interactive uses.

V. DISCUSSION

This section discusses the limitations of our work. We start
with experimental flaws and broaden our scope to limitations
of the technique and the underlying model.

There are programming practices that would reduce the
effectiveness of our analysis technique. In particular, our
techniques would produce useless results on programs that
catch all exceptions and emit only a general error message. Our
log-based experiments (though not our technique) implicitly
assume that messages that mention options are representative
of program points that users care about.

Our technique focuses exclusively on configuration errors
where the value of an option is wrong and this causes a
program to fail in a deterministic way with an error message.
This category represents many but not all, real misconfigu-
rations [5], [1]. The injected errors we used to evaluate our
analysis are intended as representative examples.

We focus exclusively on named configuration options with a
key-value semantic. This model is common, but not universal.
It has two properties that we rely on. The first is that named
options are associated nearly one-to-one with points where the
program reads the option, and this mapping can be found auto-
matically. The second is that options are not arbitrary data. In
our previous work we showed that a large majority of options
fall into one of three categories: numerical parameters (such
as timers and buffer sizes), named modes of operation (such as
Boolean switches that enable and disable features), and names

of system-level entities (such as network addresses and file
names). Values of these types are used in narrower ways than
arbitrarily chosen program inputs would be, including those
inputs that might be viewed as configuration under a broader
definition. For example, our approach would not help pinpoint
which line of a malformed program caused a compiler to abort.

Our prototype and experiments were restricted to Java. The
techniques we outline might not work as well for languages
such as C where the weaker type system can make points-
to analysis more challenging. As with all static analysis ap-
proaches, our techniques would not work to diagnose problems
in “programs” consisting of multiple components in several
languages, such as problems caused by a program’s start script.
And as shown above, our analysis does not track options that
are passed between processes via the command line. We tried
to pick complex and highly reflective programs, but more
complex and harder-to-analyze programs certainly exist.

We do not address errors that manifest themselves as
performance problems, resource exhaustion, or silent failures.
Addressing these errors will require a revision to our problem
statement, not just algorithmic refinements. In these cases,
there is no unique option or small set of options responsible
for the problem. If a program runs out of memory, any
configuration option that controls memory allocation could in
principle be tuned to make the error go away — potentially
a very large set. The options that control the preponderance
of memory allocations will be workload-dependent. Therefore,
dynamic analysis may be better suited to this problem.

We opted for dataflow analysis, rather than a more so-
phisticated symbolic analysis. Dataflow analysis will cover all
reachable code and runs quickly. A more sophisticated analysis
would need some model for how the Java runtime uses its
parameters, which our technique does not require.

Our technique, on its own, does not tell a user why a
value is wrong. In previous work, we proposed “configuration
spellcheck” in which analysis extracts a type signature for
an option such as “writable file”. The two approaches could
be combined. Given that an option is likely responsible for
an error, the fact that the option’s value should have been a
writable path but was not is a good root-cause explanation.
Generating concise descriptions of the problem with a given
option is left as future work, as is ranking possible diagnoses.

VI. RELATED WORK

We now summarize the prior work on diagnosing configura-
tion problems in computer systems. We group these techniques
into four broad areas: program-analysis approaches, signature-
based approaches, inter-host comparisons, and replay tech-
niques. (There has also been prior work in analyzing compile-
time configuration; for example, Krone and Snelting discuss
finding flawed configuration models [21]. We lack space to
further discuss this area.)

We are aware of two instances of prior work using program
analysis for configuration debugging. Sherlog takes as input a
program and a log, and uses a SAT solver to infer the state
of the program prior to failure [6]. Like our work, this is a

TABLE IV
MEASUREMENTS SHOWING ANALYSIS COVERAGE. TABLE SHOWS NUMBER OF METHOD CALL SITES OBSERVED BY ANALYSIS, TOTAL OPTIONS FOR
PROGRAM, OPTIONS PER CALL SITE, AND OPTIONS PER CALL SITE AT SITES WITH AT LEAST ONE.

Program Analysis | options | method calls calls with | avg deps | avg deps/call | opt mentions detected

time (min:sec) dependence per call if >0 in logs | mentions
Ant 28:08 73 34071 6579 1.4 7.2 14 11
Cassandra 3:02 50 3693 667 0.7 4.1 0 0
FreePastry 23:50 119 24193 6221 1.3 49 0 0
HBase 7:15 140 15122 3815 1.3 5.2 3 3
Hadoop DataNode 3:35 72 7258 1766 0.7 2.9 12 11
Hadoop JobTracker 4:04 126 8939 2281 1 39 9 7
Hadoop NameNode 4:20 112 11739 3161 0.7 2.7 5 5
Hadoop TaskTracker 4:58 113 8112 3170 2.3 5.8 12 12
JChord 2:20 90 6873 2234 0.8 2.4 63 61

static approach that does not require modifying the execution
environment. Unlike our work, the analysis requires output
from the faulty program. Users might need to wait as much as
half an hour for an answer. In our approach, users can get an
immediate answer from the pre-computed static analysis. Our
failure-context-sensitive analysis takes no more than a minute
or two.

ConfAid uses dynamic taint tracking (and short-distance
speculative execution) to explain errors [22]. ConfAid tracks
tokens from specified “configuration sources”, and is able to
pinpoint the tokens that most directly lead to an error. This
technique is likely to be more precise than ours and encom-
passes a broader definition of configuration. There are two
disadvantages in comparison to our work. ConfAid requires
the user to modify the execution environment for the program
being diagnosed. Our approach uses only the generated error
message. Our approach can attribute errors caused by an
inappropriate default value for an option, while ConfAid can
only track options that are explicitly set.

Problem-signature approaches diagnose configuration errors
by extracting a signature of the program behavior associated
with a particular misconfiguration. This requires that a library
of problem signatures be created for each program. A pro-
gram’s pattern of system calls is commonly used for this.
Unfortunately, signature collection (needed both from faulty
and correct runs of a system) is expensive. Further, signatures
cannot always be shared across sites, since they include the
specific configuration on each machine [23], [24].

Instead of examining program behavior to diagnose errors, it
is also possible to compare configurations themselves. Strider
and PeerPressure can help identify problems caused by bad
Registry entries on Windows machines. Strider [25] tries to
pair a working and non-working machine and constructs the
set of configuration differences. It then takes the intersection
of this set with the set of Registry entries read while the user
attempts to perform the failing action. PeerPressure goes a
step further, using the relative frequency of various settings
as a clue to their likelihood of causing the problems [26].
Since most machines, it is assumed, are healthy, an unusual
configuration setting read by a faulty process is likely the
culprit. Similar approaches can be used to identify configura-

tion problems in grid deployments [27]. All these techniques
are limited by the need for large installed bases with relaxed
privacy policies.

Replay-based diagnosis techniques automatically try pos-
sible configuration changes in a sandbox, allowing many
diagnoses to be tested without the risk of overwriting correct
configuration or damaging the rest of the system. Chronus,
AutoBash, and Triage are all systems of this type [28], [29],
[30]. Given a once-working system, Chronus uses virtualiza-
tion and a customized filesystem to pinpoint the particular
configuration change that caused the system to stop working.
The AutoBash system uses kernel-level speculative execution
to test the results of various configuration changes. Given a
set of predicates (programs that return “passing” or “failing”),
AutoBash can try potential configuration fixes in the back-
ground, without interfering with the rest of the system, until
some set of fixes solves the problem. Triage takes a similar
approach, speculatively replaying the events leading up to a
failure with small variations to pin down the root cause.

Our program analysis approaches are complementary to
replay. Program analysis makes replay more practical for niche
or tailored software by producing a list of possibly-wrong
options. Replay reduces the cost of imprecise analysis by
automatically trying multiple possibilities.

Related to replay, delta debugging is an algorithm for
pinpointing error causes, given a large set of potential
changes [31]. Delta debugging relies on having a working
state, a broken state, and a set of potential changes. This means
it cannot diagnose errors where no working configuration is
available for a particular site. It also pushes more of the work
of troubleshooting onto the user site — potentially a serious
bar to deployment.

VII. CONCLUSIONS

A number of conclusions emerge from our work.

Computing and storing configuration dependencies is
tractable. In theory, each program point could depend on an
arbitrary subset of the program’s configuration options, result-
ing in excessive computation and storage costs. In practice,
we have observed that most program points depend on only a
small number of options. As a result, storing the dependencies

at each point is feasible, with size roughly proportional to the
program’s code.

Dataflow analysis can explain typo-induced errors. The
high accuracy of our analysis implies that, at least for the
programs we studied, there are usually data dependencies
between configuration values and the points in the code where
a bad value can cause an error.

For diagnosing configuration errors, it is safe to model
library code, rather than analyzing it. Our approach uses
an approximate model for library code, instead of analyzing
the library and tracking the flow of options through it. This
gave us substantial performance benefits without causing any
false negatives in our tests.

Failure-context-sensitive analysis helps exploit stack
traces for configuration debugging. In our testing for
Hadoop, failure-context-sensitive analysis reduced the impre-
cision of static analysis by a third while taking approximately
a minute per stack trace.

Programs should log the configuration options they read.
If a program does not read all its options, then knowing which
options were actually read substantially improves analysis pre-
cision. Recording this information only requires developers to
insert a handful of log statements, rather than make extensive
changes to their programs. Since even large systems (like
Hadoop) often have only a few hundred options, the logging
overhead is small.

ACKNOWLEDGEMENTS

We thank Koushik Sen and Mayur Naik for their advice and
encouragement. We appreciate the time and attention devoted
by the anonymous reviewers.

This research is supported in part by gifts from Google,
SAP, Amazon Web Services, Cloudera, Ericsson, Huawei,
IBM, Intel, Mark Logic, Microsoft, NEC Labs, Network Ap-
pliance, Oracle, Splunk and VMWare and by DARPA (contract
#FA8650-11-C-7136).

REFERENCES

[11 A. B. Brown and D. A. Patterson, “To err is human,” in Proceedings of

the First Workshop on evaluating and architecting system dependability
(EASY’01), 2001.

[2] M. Levesque, “Fundamental issues with open source software devel-
opment,” First Monday:, vol. Special Issue #2: Open Source, October
2005.

[3] M. Michlmayr, F. Hunt, and D. Probert, “Quality practices and problems
in free software projects,” in First International Conference on Open
Source Systems, 2005.

[4] A. Rabkin and R. Katz, “Static extraction of program configuration
options,” in ICSE, 2011.

[51 Z. Yin, J. Zheng, X. Ma, Y. Zhou, S. Pasupath, and L. Bairavasundaram,
“An empirical study on configuration errors in commercial and open
source systems,” in SOSP, 2011.

[6]

[7]

[8]
[9]

(10]
[11]

[12]

[13]
[14]
[15]

[16]

[17]
(18]
[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

(27]

(28]
[29]
[30]

[31]

D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy, “Sherlog:
Error diagnosis by connecting clues from run-time logs,” in ASPLOS,
2010.

W. Xu, L. Huang, M. Jordan, D. Patterson, and A. Fox, “Detecting
Large-Scale System Problems by Mining Console Logs,” in SOSP, 2009.
M. Naik, “JChord,” http://jchord.googlecode.com.

E. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),” in IEEE Symposium on Security and
Privacy, 2010.

M. Sridharan, S. Fink, and R. Bodik, “Thin slicing,” in PLDI, 2007.
D. Engler and K. Ashcraft, “RacerX: effective, static detection of race
conditions and deadlocks,” in SOSP, 2003.

A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object
sensitivity for points-to analysis for java,” ACM Trans. Softw. Eng.
Methodol., vol. 14, pp. 1-41, January 2005.

R. Hasti and S. Horwitz, “Using static single assignment form to improve
flow-insensitive pointer analysis,” in PLDI, 1998.

B. Livshits, J. Whaley, and M. Lam, “Reflection analysis for Java,” in
Third Asian Symposium on Programming Languages and Systems, 2005.
A. Christensen, A. Mgller, and M. Schwartzbach, “Precise Analysis of
String Expressions,” in Symposium on Static Analysis, 2003.

J. Bloch, “How to design a good api and why it matters,” in OOPSLA,
2006, pp. 506-507. [Online]. Available: http://doi.acm.org/10.1145/
1176617.1176622

T. Reps, M. Sagiv, and S. Horwitz, “Precise interprocedural dataflow
analysis via graph reachability,” in POPL ’95, 1995.

L. Keller, P. Upadhyaya, and G. Candea, “ConfErr: A tool for assessing
resilience to human configuration errors,” in DSN, 2008.

A. Lakshman, P. Malik, and K. Ranganathan, “Cassandra: A Structured
Storage System on a P2P Network,” in SIGMOD, 2008.

A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object lo-
cation, and routing for large-scale peer-to-peer systems,” in Middleware,
2001.

M. Krone and G. Snelting, “On the inference of configuration structures
from source code,” in ICSE, 1994.

M. Attariyan and J. Flinn, “Automating configuration troubleshooting
with dynamic information flow analysis,” in OSDI, 2010.

C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wang, and W.-Y. Ma,
“Automated known problem diagnosis with event traces,” in EuroSys,
2006.

X. Ding, H. Huang, Y. Ruan, A. Shaikh, and X. Zhang, “Automatic
software fault diagnosis by exploiting application signatures,” in LISA,
2008.

Y. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. Wang, C. Yuan, and
Z. Zhang, “STRIDER: A Black-box, State-based Approach to Change
and Configuration Management and Support,” in LISA, 2003.

H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang, “Automatic
Misconfiguration Troubleshooting with PeerPressure,” in OSDI, 2004.
N. Palatin, A. Leizarowitz, A. Schuster, and R. Wolff, “Mining for
misconfigured machines in grid systems,” in International Conference
on Knowledge Discovery and Data Mining, 2006.

A. Whitaker, R. S. Cox, and S. D. Gribble, “Configuration debugging
as search: Finding the needle in the haystack,” in OSDI, 2004.

Y.-Y. Su, M. Attariyan, and J. Flinn, “Autobash: improving configuration
management with operating system causality analysis,” in SOSP, 2007.
J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou, “Triage: diagnosing
production run failures at the user’s site,” in SOSP, 2007.

A. Zeller, “Yesterday, my program worked. Today, it does not. Why?”
in ESEC/FSE, 1999.

